Header logo is ps


2012


Thumb xl facialfeature
Real-time Facial Feature Detection using Conditional Regression Forests

Dantone, M., Gall, J., Fanelli, G., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2578-2585, IEEE, Providence, RI, USA, 2012 (inproceedings)

code pdf Project Page [BibTex]

2012

code pdf Project Page [BibTex]


Thumb xl lht
Latent Hough Transform for Object Detection

Razavi, N., Gall, J., Kohli, P., van Gool, L.

In European Conference on Computer Vision (ECCV), 7574, pages: 312-325, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl destflow
Destination Flow for Crowd Simulation

Pellegrini, S., Gall, J., Sigal, L., van Gool, L.

In Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, 7585, pages: 162-171, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl soumyanips
From Deformations to Parts: Motion-based Segmentation of 3D Objects

Ghosh, S., Sudderth, E., Loper, M., Black, M.

In Advances in Neural Information Processing Systems 25 (NIPS), pages: 2006-2014, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
We develop a method for discovering the parts of an articulated object from aligned meshes of the object in various three-dimensional poses. We adapt the distance dependent Chinese restaurant process (ddCRP) to allow nonparametric discovery of a potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying 3D shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured in dozens of poses, we infer parts which provide quantitatively better deformation predictions than conventional clustering methods.

pdf supplemental code poster link (url) Project Page [BibTex]

pdf supplemental code poster link (url) Project Page [BibTex]


Thumb xl cells
Interactive Object Detection

Yao, A., Gall, J., Leistner, C., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3242-3249, IEEE, Providence, RI, USA, 2012 (inproceedings)

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Thumb xl hands
Motion Capture of Hands in Action using Discriminative Salient Points

Ballan, L., Taneja, A., Gall, J., van Gool, L., Pollefeys, M.

In European Conference on Computer Vision (ECCV), 7577, pages: 640-653, LNCS, Springer, 2012 (inproceedings)

data video pdf supplementary Project Page [BibTex]

data video pdf supplementary Project Page [BibTex]


Thumb xl selfsimilarity small
Sparsity Potentials for Detecting Objects with the Hough Transform

Razavi, N., Alvar, N., Gall, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 11.1-11.10, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl multiclasshf
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Thumb xl metricpose
Metric Learning from Poses for Temporal Clustering of Human Motion

L’opez-M’endez, A., Gall, J., Casas, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 49.1-49.12, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

video pdf Project Page Project Page [BibTex]

video pdf Project Page Project Page [BibTex]


Thumb xl objectproposal
Local Context Priors for Object Proposal Generation

Ristin, M., Gall, J., van Gool, L.

In Asian Conference on Computer Vision (ACCV), 7724, pages: 57-70, LNCS, Springer-Verlag, 2012 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl kinectbookchap
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl cvprlayers12crop
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


Thumb xl amdo2012v2
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


Thumb xl nips teaser
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2011


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

pdf YouTube poster Project Page Project Page [BibTex]

2011

pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


Thumb xl fosterembs2011
Combining wireless neural recording and video capture for the analysis of natural gait

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M. J., Shenoy, K.

In Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, pages: 613-616, IEEE, 2011 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl andriluka2011
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

publisher's site Project Page [BibTex]

publisher's site Project Page [BibTex]


Thumb xl dagm2011imagesmall
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

pdf talk Project Page [BibTex]

pdf talk Project Page [BibTex]


Thumb xl srf2011 2
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

publisher site [BibTex]

publisher site [BibTex]