Header logo is ps


2011


no image
Correspondence estimation from non-rigid motion information

Wulff, J., Lotz, T., Stehle, T., Aach, T., Chase, J. G.

In Proc. SPIE, Proc. SPIE, (Editors: B. M. Dawant, D. R. Haynor), SPIE, 2011 (inproceedings)

Abstract
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

pdf link (url) DOI [BibTex]

2011

pdf link (url) DOI [BibTex]


Predicting Articulated Human Motion from Spatial Processes
Predicting Articulated Human Motion from Spatial Processes

Soren Hauberg, Kim S. Pedersen

International Journal of Computer Vision, 94, pages: 317-334, Springer Netherlands, 2011 (article)

Publishers site Code Paper site PDF [BibTex]

Publishers site Code Paper site PDF [BibTex]


An Empirical Study on the Performance of Spectral Manifold Learning Techniques
An Empirical Study on the Performance of Spectral Manifold Learning Techniques

Peter Mysling, Soren Hauberg, Kim S. Pedersen

In Artificial Neural Networks and Machine Learning – ICANN 2011, 6791, pages: 347-354, Lecture Notes in Computer Science, (Editors: Honkela, Timo and Duch, Włodzisław and Girolami, Mark and Kaski, Samuel), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Separation of visual object features and grasp strategy in primate ventral premotor cortex

Vargas-Irwin, C., Franquemont, L., Black, M., Donoghue, J.

Neural Control of Movement, 21st Annual Conference, 2011 (conference)

[BibTex]

[BibTex]

2005


Representing cyclic human motion using functional analysis
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

pdf pdf from publisher DOI [BibTex]

2005

pdf pdf from publisher DOI [BibTex]


A quantitative evaluation of video-based {3D} person tracking
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Inferring attentional state and kinematics from motor cortical firing rates
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Motor cortical decoding using an autoregressive moving average model
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Fields of Experts: A framework for learning image priors
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


On the spatial statistics of optical flow
On the spatial statistics of optical flow

(Marr Prize, Honorable Mention)

Roth, S., Black, M. J.

In International Conf. on Computer Vision, International Conf. on Computer Vision, pages: 42-49, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Modeling neural population spiking activity with {Gibbs} distributions
Modeling neural population spiking activity with Gibbs distributions

Wood, F., Roth, S., Black, M. J.

In Advances in Neural Information Processing Systems 18, pages: 1537-1544, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

abstract [BibTex]

abstract [BibTex]

2002


Inferring hand motion from multi-cell recordings in motor cortex using a {Kalman} filter
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Probabilistic inference of hand motion from neural activity in motor cortex
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

Abstract
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides train- ing data of neural firing conditioned on hand kinematics. We learn a non- parametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non- Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is com- pared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.

pdf [BibTex]

pdf [BibTex]


Automatic detection and tracking of human motion with a view-based representation
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


A layered motion representation with occlusion and compact spatial support
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Implicit probabilistic models of human motion for synthesis and tracking
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial modeling
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

2001


Dynamic coupled component analysis
Dynamic coupled component analysis

De la Torre, F., Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’01, 2, pages: 643-650, IEEE, Kauai, Hawaii, December 2001 (inproceedings)

pdf [BibTex]

2001

pdf [BibTex]


Robust principal component analysis for computer vision
Robust principal component analysis for computer vision

De la Torre, F., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 362-369, Vancouver, BC, USA, 2001 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Learning image statistics for {Bayesian} tracking
Learning image statistics for Bayesian tracking

Sidenbladh, H., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 709-716, Vancouver, BC, USA, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Encoding/decoding of arm kinematics from simultaneously recorded MI neurons

Gao, Y., Bienenstock, E., Black, M., Shoham, S., Serruya, M., Donoghue, J.

Society for Neuroscience Abst. Vol. 27, Program No. 572.14, 2001 (conference)

abstract [BibTex]

abstract [BibTex]


Learning and tracking cyclic human motion
Learning and tracking cyclic human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

In Advances in Neural Information Processing Systems 13, NIPS, pages: 894-900, (Editors: Leen, Todd K. and Dietterich, Thomas G. and Tresp, Volker), The MIT Press, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

Abstract
The computation of optical flow relies on merging information available over an image patch to form an estimate of 2-D image velocity at a point. This merging process raises many issues. These include the treatment of outliers in component velocity measurements and the modeling of multiple motions within a patch which arise from occlusion boundaries or transparency. A new approach for dealing with these issues is presented. It is based on the use of a probabilistic mixture model to explicitly represent multiple motions within a patch. A simple extension of the EM-algorithm is used to compute a maximum likelihood estimate for the various motion parameters. Preliminary experiments indicate that this approach is computationally efficient, and that it can provide robust estimates of the optical flow values in the presence of outliers and multiple motions.

pdf tech report [BibTex]

1993

pdf tech report [BibTex]


A framework for the robust estimation of optical flow
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

pdf [BibTex]

pdf [BibTex]


Action, representation, and purpose: Re-evaluating the foundations of computational vision
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1992


Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Combining intensity and motion for incremental segmentation and tracking over long image sequences
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]

1990


A model for the detection of motion over time
A model for the detection of motion over time

Black, M. J., Anandan, P.

In Proc. Int. Conf. on Computer Vision, ICCV-90, pages: 33-37, Osaka, Japan, December 1990 (inproceedings)

Abstract
We propose a model for the recovery of visual motion fields from image sequences. Our model exploits three constraints on the motion of a patch in the environment: i) Data Conservation: the intensity structure corresponding to an environmental surface patch changes gradually over time; ii) Spatial Coherence: since surfaces have spatial extent neighboring points have similar motions; iii) Temporal Coherence: the direction and velocity of motion for a surface patch changes gradually. The formulation of the constraints takes into account the possibility of multiple motions at a particular location. We also present a highly parallel computational model for realizing these constraints in which computation occurs locally, knowledge about the motion increases over time, and occlusion and disocclusion boundaries are estimated. An implementation of the model using a stochastic temporal updating scheme is described. Experiments with both synthetic and real imagery are presented.

pdf [BibTex]

1990

pdf [BibTex]


Constraints for the early detection of discontinuity from motion
Constraints for the early detection of discontinuity from motion

Black, M. J., Anandan, P.

In Proc. National Conf. on Artificial Intelligence, AAAI-90, pages: 1060-1066, Boston, MA, 1990 (inproceedings)

Abstract
Surface discontinuities are detected in a sequence of images by exploiting physical constraints at early stages in the processing of visual motion. To achieve accurate early discontinuity detection we exploit five physical constraints on the presence of discontinuities: i) the shape of the sum of squared differences (SSD) error surface in the presence of surface discontinuities; ii) the change in the shape of the SSD surface due to relative surface motion; iii) distribution of optic flow in a neighborhood of a discontinuity; iv) spatial consistency of discontinuities; V) temporal consistency of discontinuities. The constraints are described, and experimental results on sequences of real and synthetic images are presented. The work has applications in the recovery of environmental structure from motion and in the generation of dense optic flow fields.

pdf [BibTex]

pdf [BibTex]