Header logo is ps


2013


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

pdf supplementary project page [BibTex]

2013

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


no image
Perception-driven multi-robot formation control

Ahmad, A., Nascimento, T., Conceicao, A., Moreira, A., Lima, P.

In pages: 1851-1856, IEEE, May 2013 (inproceedings)

Abstract
Maximizing the performance of cooperative perception of a tracked target by a team of mobile robots while maintaining the team's formation is the core problem addressed in this work. We propose a solution by integrating the controller and the estimator modules in a formation control loop. The controller module is a distributed non-linear model predictive controller and the estimator module is based on a particle filter for cooperative target tracking. A formal description of the integration followed by simulation and real robot results on two different teams of homogeneous robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target's cooperative estimate while complying with the performance criteria such as keeping a pre-set distance between the team-mates and/or the target and obstacle avoidance.

DOI [BibTex]

DOI [BibTex]


no image
Cooperative Robot Localization and Target Tracking based on Least Squares Minimization

Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.

In pages: 5696-5701, IEEE, May 2013 (inproceedings)

Abstract
In this paper we address the problem of cooperative localization and target tracking with a team of moving robots. We model the problem as a least squares minimization problem and show that this problem can be efficiently solved using sparse optimization methods. To achieve this, we represent the problem as a graph, where the nodes are robot and target poses at individual time-steps and the edges are their relative measurements. Static landmarks at known position are used to define a common reference frame for the robots and the targets. In this way, we mitigate the risk of using measurements and state estimates more than once, since all the relative measurements are i.i.d. and no marginalization is performed. Experiments performed using a set of real robots show higher accuracy compared to a Kalman filter.

DOI [BibTex]

DOI [BibTex]


no image
Unknown-color spherical object detection and tracking

Troppan, A., Guerreiro, E., Celiberti, F., Santos, G., Ahmad, A., Lima, P.

In pages: 1-4, IEEE, April 2013 (inproceedings)

Abstract
Detection and tracking of an unknown-color spherical object in a partially-known environment using a robot with a single camera is the core problem addressed in this article. A novel color detection mechanism, which exploits the geometrical properties of the spherical object's projection onto the image plane, precedes the object's detection process. A Kalman filter-based tracker uses the object detection in its update step and tracks the spherical object. Real robot experimental evaluation of the proposed method is presented on soccer robots detecting and tracking an unknown-color ball.

DOI [BibTex]

DOI [BibTex]


Thumb xl visapp
Simple, fast, accurate melanocytic lesion segmentation in 1D colour space

Peruch, F., Bogo, F., Bonazza, M., Bressan, M., Cappelleri, V., Peserico, E.

In VISAPP (1), pages: 191-200, Barcelona, February 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl secretstr
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

pdf [BibTex]

pdf [BibTex]


Thumb xl thumbiccvsilvia
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

pdf code data DOI Project Page Project Page Project Page [BibTex]

pdf code data DOI Project Page Project Page Project Page [BibTex]


no image
Right Ventricle Segmentation by Temporal Information Constrained Gradient Vector Flow

X. Yang, S. Y. Yeo, Y. Su, C. Lim, M. Wan, L. Zhong, R. S. Tan

In IEEE International Conference on Systems, Man, and Cybernetics, 2013 (inproceedings)

Abstract
Evaluation of right ventricular (RV) structure and function is of importance in the management of most cardiac disorders. But the segmentation of RV has always been consid- ered challenging due to low contrast of the myocardium with surrounding and high shape variability of the RV. In this paper, we present a 2D + T active contour model for segmentation and tracking of RV endocardium on cardiac magnetic resonance (MR) images. To take into account the temporal information between adjacent frames, we propose to integrate the time-dependent constraints into the energy functional of the classical gradient vector flow (GVF). As a result, the prior motion knowledge of RV is introduced in the deformation process through the time-dependent constraints in the proposed GVF-T model. A weighting parameter is introduced to adjust the weight of the temporal information against the image data itself. The additional external edge forces retrieved from the temporal constraints may be useful for the RV segmentation, such that lead to a better segmentation performance. The effectiveness of the proposed approach is supported by experimental results on synthetic and cardiac MR images.

[BibTex]

[BibTex]


Thumb xl gcpr thumbnail 200 112
A Comparison of Directional Distances for Hand Pose Estimation

Tzionas, D., Gall, J.

In German Conference on Pattern Recognition (GCPR), 8142, pages: 131-141, Lecture Notes in Computer Science, (Editors: Weickert, Joachim and Hein, Matthias and Schiele, Bernt), Springer, 2013 (inproceedings)

Abstract
Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]


Thumb xl iccv13
Dynamic Probabilistic Volumetric Models

Ulusoy, A. O., Biris, O., Mundy, J. L.

In ICCV, pages: 505-512, 2013 (inproceedings)

Abstract
This paper presents a probabilistic volumetric framework for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compression of 4-d data and provide efficient spatio-temporal processing. The advances of the proposed framework is demonstrated on standard datasets using free-viewpoint video and 3-d tracking applications.

video pdf DOI [BibTex]

video pdf DOI [BibTex]


Thumb xl apcom1
Model Reconstruction of Patient-Specific Cardiac Mesh from Segmented Contour Lines

C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. S. Tan, K. K. Poh, P. Chai,

In Asia Pacific Congress on Computational Mechanics, 2013 (inproceedings)

Abstract
We propose an automatic algorithm for the reconstruction of a set of patient-specific dynamic cardiac mesh model with 1-to-1 mesh correspondence over the whole cardiac cycle. This work focus on both the reconstruction technique of the initial 3D model of the heart and also the consistent mapping of the vertex positions throughout all the 3D meshes. This process is technically more challenging due to the wide interval spacing between MRI images as compared to CT images, making overlapping blood vessels much harder to discern. We propose a tree-based connectivity data structure to perform a filtering process to eliminate weak connections between contours on adjacent slices. The reconstructed 3D model from the first time step is used as a base template model, and deformed to fit the segmented contours in the next time step. Our algorithm has been tested on an actual acquisition of cardiac MRI images over one cardiac cycle.

[BibTex]

[BibTex]


Thumb xl pic cdc iccv13
A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach

Zeng, Y., Wang, C., Gu, X., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), pages: 3360~3367, 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ncmrf cvpr2013
Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimensions of Higher-Order Cliques

Zeng, Y., Wang, C., Soatto, S., Yau, S.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl embs1
Reconstructing patient-specific cardiac models from contours via Delaunay triangulation and graph-cuts

Min Wan, Calvin Lim, Junmei Zhang, Yi Su, Si Yong Yeo, Desheng Wang, Ru San Tan, Liang Zhong

In International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 2976-9, 2013 (inproceedings)

[BibTex]

[BibTex]


Thumb xl cinc1
Regional comparison of left ventricle systolic wall stress reveals intraregional uniformity in healthy subjects

Soo Kng Teo, Si Yong Yeo, May Ling Tan, Chi Wan Lim, Liang Zhong, Ru San Tan, Yi Su

In Computing in Cardiology Conference, pages: 575 - 578, 2013 (inproceedings)

Abstract
This study aimed to assess the feasibility of using the regional uniformity of the left ventricle (LV) wall stress (WS) to diagnose patients with myocardial infarction. We present a novel method using a similarity map that measures the degree of uniformity in nominal systolic WS across pairs of segments within the same patient. The values of the nominal WS are computed at each vertex point from a 1-to-1 corresponding mesh pair of the LV at the end-diastole (ED) and end-systole (ES) phases. The 3D geometries of the LV at ED and ES are reconstructed from border-delineated MRI images and the 1-to-1 mesh generated using a strain-energy minimization approach. The LV is then partitioned into 16 segments based on published clinical standard and the nominal WS histogram distribution for each of the segment was computed. A similarity index is then computed for each pair of histogram distributions to generate a 16-by-16 similarity map. Based on our initial study involving 12 MI patients and 9 controls, we observed uniformity for intra- regional comparisons in the controls compared against the patients. Our results suggest that the regional uniformity of the nominal systolic WS in the form of a similarity map can potentially be used as a discriminant between MI patients and normal controls.

[BibTex]

[BibTex]

2011


Thumb xl teaser iccv2011
Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H., Rosenhahn, B.

In IEEE International Conference on Computer Vision (ICCV), pages: 1243-1250, November 2011 (inproceedings)

project page pdf supplemental [BibTex]

2011

project page pdf supplemental [BibTex]


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl iccv2012
Means in spaces of tree-like shapes

Aasa Feragen, Soren Hauberg, Mads Nielsen, Francois Lauze

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 736 -746, IEEE, november 2011 (inproceedings)

Publishers site PDF Suppl. material [BibTex]

Publishers site PDF Suppl. material [BibTex]


Thumb xl teaser iccvw
Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker

Leal-Taixé, L., Rosenhahn, G. P. A. B.

In IEEE International Conference on Computer Vision Workshops (IICCVW), November 2011 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Thumb xl mt
Branch&Rank: Non-Linear Object Detection

(Best Impact Paper Prize)

Lehmann, A., Gehler, P., VanGool, L.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 8.1-8.11, (Editors: Jesse Hoey and Stephen McKenna and Emanuele Trucco), BMVA Press, September 2011, http://dx.doi.org/10.5244/C.25.8 (inproceedings)

video of talk pdf slides supplementary [BibTex]

video of talk pdf slides supplementary [BibTex]


Thumb xl teaser dagm2011
Efficient and Robust Shape Matching for Model Based Human Motion Capture

Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.

In German Conference on Pattern Recognition (GCPR), pages: 416-425, September 2011 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


no image
BrainGate pilot clinical trials: Progress in translating neural engineering principles to clinical testing

Hochberg, L., Simeral, J., Black, M., Bacher, D., Barefoot, L., Berhanu, E., Borton, D., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Perge, J., Rosler, D., Schmansky, N., Travers, B., Truccolo, W., Nurmikko, A., Donoghue, J.

33rd Annual International IEEE EMBS Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, August 2011 (conference)

[BibTex]

[BibTex]


no image
ISocRob-MSL 2011 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Sousa, J., Lima, P.

15th Annual RoboCup International Symposium 2011, July 2011 (techreport)

Abstract
This paper describes the status of the ISocRob MSL robotic soccer team as required by the RoboCup 2011 qualification procedures. The most relevant technical and scientifical developments carried out by the team, since its last participation in the RoboCup MSL competitions, are here detailed. These include cooperative localization, cooperative object tracking, planning under uncertainty, obstacle detection and improvements to self-localization.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl screen shot 2012 02 23 at 09.35.10
Learning Output Kernels with Block Coordinate Descent

Dinuzzo, F., Ong, C. S., Gehler, P., Pillonetto, G.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages: 49-56, ICML ’11, (Editors: Getoor, Lise and Scheffer, Tobias), ACM, New York, NY, USA, June 2011 (inproceedings)

data+code pdf [BibTex]

data+code pdf [BibTex]


Thumb xl jampani11 spie
Role of expertise and contralateral symmetry in the diagnosis of pneumoconiosis: an experimental study

Jampani, V., Vaidya, V., Sivaswamy, J., Tourani, K. L.

In Proc. SPIE 7966, Medical Imaging: Image Perception, Observer Performance, and Technology Assessment, 2011, Florida, March 2011 (inproceedings)

Abstract
Pneumoconiosis, a lung disease caused by the inhalation of dust, is mainly diagnosed using chest radiographs. The effects of using contralateral symmetric (CS) information present in chest radiographs in the diagnosis of pneumoconiosis are studied using an eye tracking experimental study. The role of expertise and the influence of CS information on the performance of readers with different expertise level are also of interest. Experimental subjects ranging from novices & medical students to staff radiologists were presented with 17 double and 16 single lung images, and were asked to give profusion ratings for each lung zone. Eye movements and the time for their diagnosis were also recorded. Kruskal-Wallis test (χ2(6) = 13.38, p = .038), showed that the observer error (average sum of absolute differences) in double lung images differed significantly across the different expertise categories when considering all the participants. Wilcoxon-signed rank test indicated that the observer error was significantly higher for single-lung images (Z = 3.13, p < .001) than for the double-lung images for all the participants. Mann-Whitney test (U = 28, p = .038) showed that the differential error between single and double lung images is significantly higher in doctors [staff & residents] than in non-doctors [others]. Thus, Expertise & CS information plays a significant role in the diagnosis of pneumoconiosis. CS information helps in diagnosing pneumoconiosis by reducing the general tendency of giving less profusion ratings. Training and experience appear to play important roles in learning to use the CS information present in the chest radiographs.

url link (url) [BibTex]

url link (url) [BibTex]


Thumb xl problem
Recovering Intrinsic Images with a Global Sparsity Prior on Reflectance

Gehler, P., Rother, C., Kiefel, M., Zhang, L., Schölkopf, B.

In Advances in Neural Information Processing Systems 24, pages: 765-773, (Editors: Shawe-Taylor, John and Zemel, Richard S. and Bartlett, Peter L. and Pereira, Fernando C. N. and Weinberger, Kilian Q.), Curran Associates, Inc., Red Hook, NY, USA, 2011 (inproceedings)

Abstract
We address the challenging task of decoupling material properties from lighting properties given a single image. In the last two decades virtually all works have concentrated on exploiting edge information to address this problem. We take a different route by introducing a new prior on reflectance, that models reflectance values as being drawn from a sparse set of basis colors. This results in a Random Field model with global, latent variables (basis colors) and pixel-accurate output reflectance values. We show that without edge information high-quality results can be achieved, that are on par with methods exploiting this source of information. Finally, we are able to improve on state-of-the-art results by integrating edge information into our model. We believe that our new approach is an excellent starting point for future developments in this field.

website + code pdf poster Project Page Project Page [BibTex]

website + code pdf poster Project Page Project Page [BibTex]


Thumb xl openbiosafetylab  a virtual world based biosafety training application for medical students
OpenBioSafetyLab: A virtual world based biosafety training application for medical students

Nakasone, A., Tang, S., Shigematsu, M., Heinecke, B., Fujimoto, S., Prendinger, H.

In International Conference on Information Technology: New Generations (ITNG), IEEE CPS, 2011 (inproceedings)

PDF [BibTex]

PDF [BibTex]


Thumb xl fosterembs2011
Combining wireless neural recording and video capture for the analysis of natural gait

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M. J., Shenoy, K.

In Proc. 5th Int. IEEE EMBS Conf. on Neural Engineering, pages: 613-616, IEEE, 2011 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl segmentation isbi11
Tagged Cardiac MR Image Segmentation Using Boundary & Regional-Support and Graph-based Deformable Priors

Xiang, B., Wang, C., Deux, J., Rahmouni, A., Paragios, N.

In IEEE International Symposium on Biomedical Imaging (ISBI), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl multi nrsfm
Multiview Structure from Motion in Trajectory Space

Zaheer, A., Akhter, I., Mohammad, H. B., Marzban, S., Khan, S.

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 2447-2453, 2011 (inproceedings)

Abstract
Most nonrigid objects exhibit temporal regularities in their deformations. Recently it was proposed that these regularities can be parameterized by assuming that the non- rigid structure lies in a small dimensional trajectory space. In this paper, we propose a factorization approach for 3D reconstruction from multiple static cameras under the com- pact trajectory subspace representation. Proposed factor- ization is analogous to rank-3 factorization of rigid struc- ture from motion problem, in transformed space. The benefit of our approach is that the 3D trajectory basis can be directly learned from the image observations. This also allows us to impute missing observations and denoise tracking errors without explicit estimation of the 3D structure. In contrast to standard triangulation based methods which require points to be visible in at least two cameras, our ap- proach can reconstruct points, which remain occluded even in all the cameras for quite a long time. This makes our solution especially suitable for occlusion handling in motion capture systems. We demonstrate robustness of our method on challenging real and synthetic scenarios.

pdf project page [BibTex]

pdf project page [BibTex]


Thumb xl scia2011
Unscented Kalman Filtering for Articulated Human Tracking

Anders Boesen Lindbo Larsen, Soren Hauberg, Kim S. Pedersen

In Image Analysis, 6688, pages: 228-237, Lecture Notes in Computer Science, (Editors: Heyden, Anders and Kahl, Fredrik), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Adaptation for perception of the human body: Investigations of transfer across viewpoint and pose

Sekunova, A., Black, M. J., Parkinson, L., Barton, J. S.

Vision Sciences Society, 2011 (conference)

[BibTex]

[BibTex]


Thumb xl icip1
Level Set Segmentation with Robust Image Gradient Energy and Statistical Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In IEEE International Conference on Image Processing, pages: 3397 - 3400, 2011 (inproceedings)

Abstract
We propose a new level set segmentation method with statistical shape prior using a variational approach. The image energy is derived from a robust image gradient feature. This gives the active contour a global representation of the geometric configuration, making it more robust to image noise, weak edges and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the model to handle relatively large shape variations. Comparative examples using both synthetic and real images show the robustness and efficiency of the proposed method.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl cmbve1
Variational Level Set Segmentation Using Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Mathematical and Computational Biomedical Engineering, 2011 (inproceedings)

[BibTex]

[BibTex]


Thumb xl hmdb snapshot1
HMDB: A Large Video Database for Human Motion Recognition

Kuhne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

code, webpage, dataset pdf [BibTex]

code, webpage, dataset pdf [BibTex]


Thumb xl screen shot 2012 03 13 at 2.41.46 pm
Dorsal Stream: From Algorithm to Neuroscience

Jhuang, H.

PhD Thesis, MIT, 2011 (techreport)

pdf [BibTex]


no image
Context dependent changes in grip selectivity in primate ventral premotor cortex

Franquemont, L., Vargas-Irwin, C., Black, M., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Online, Society for Neuroscience, 2011, Online (conference)

[BibTex]

[BibTex]


no image
Towards a freely moving animal model: Combining markerless multi-camera video capture and wirelessly transmitted neural recording for the analysis of walking

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M., Shenoy, K.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl dagm2011imagesmall
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

pdf talk Project Page [BibTex]

pdf talk Project Page [BibTex]


no image
Visual orientation and direction selectivity through thalamic synchrony

Kelly, S., Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

[BibTex]

[BibTex]


no image
Use of the BrainGate neural inteface system for more than five years by a woman with tetraplegia

Hochberg, L., Bacher, D., Barefoot, L., Berhanu, E., Black, M., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Berge, J., Rosler, D., Schmansky, N., Simeral, J., Travers, B., Truccolo, W., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Onine (conference)

[BibTex]

[BibTex]


no image
Extracting 3D Structures from Biomedical Data

Xianghua Xie, Si Yong Yeo, Igor Sazonov, Perumal Nithiarasu

Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, 2011 (conference)

[BibTex]

[BibTex]


Thumb xl illumination cvpr11
Illumination Estimation and Cast Shadow Detection through a Higher-order Graphical Model

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl femursegmentation miccai11
Pose-invariant 3D Proximal Femur Estimation through Bi-Planar Image Segmentation with Hierarchical Higher-Order Graph-based Priors

Wang, C., Boussaid, H., Simon, L., Lazennec, J., Paragios, N.

In International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl sufacetracking cvpr11
Intrinsic Dense 3D Surface Tracking

Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl emmcvpr2012
Data-Driven Importance Distributions for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 6819, pages: 287-299, Lecture Notes in Computer Science, (Editors: Boykov, Yuri and Kahl, Fredrik and Lempitsky, Victor and Schmidt, Frank), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site Code PDF Suppl. material [BibTex]

Publishers site Code PDF Suppl. material [BibTex]


Thumb xl kdcv2011 teaser
A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model

Soren Hauberg, Kim Steenstrup Pedersen

In 1st IEEE Workshop on Kernels and Distances for Computer Vision (ICCV workshop), 2011 (inproceedings)

Workshop link [BibTex]

Workshop link [BibTex]