Header logo is ps


2012


From pictorial structures to deformable structures
From pictorial structures to deformable structures

Zuffi, S., Freifeld, O., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3546-3553, IEEE, June 2012 (inproceedings)

Abstract
Pictorial Structures (PS) define a probabilistic model of 2D articulated objects in images. Typical PS models assume an object can be represented by a set of rigid parts connected with pairwise constraints that define the prior probability of part configurations. These models are widely used to represent non-rigid articulated objects such as humans and animals despite the fact that such objects have parts that deform non-rigidly. Here we define a new Deformable Structures (DS) model that is a natural extension of previous PS models and that captures the non-rigid shape deformation of the parts. Each part in a DS model is represented by a low-dimensional shape deformation space and pairwise potentials between parts capture how the shape varies with pose and the shape of neighboring parts. A key advantage of such a model is that it more accurately models object boundaries. This enables image likelihood models that are more discriminative than previous PS likelihoods. This likelihood is learned using training imagery annotated using a DS “puppet.” We focus on a human DS model learned from 2D projections of a realistic 3D human body model and use it to infer human poses in images using a form of non-parametric belief propagation.

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]

2012

pdf sup mat code poster Project Page Project Page Project Page Project Page [BibTex]


Teaching 3D Geometry to Deformable Part Models
Teaching 3D Geometry to Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3362 -3369, IEEE, Providence, RI, USA, June 2012, oral presentation (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Branch-and-price global optimization for multi-view multi-object tracking
Branch-and-price global optimization for multi-view multi-object tracking

Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2012 (inproceedings)

project page paper poster [BibTex]

project page paper poster [BibTex]


A physically-based approach to reflection separation
A physically-based approach to reflection separation

Kong, N., Tai, Y., Shin, S. Y.

In Proc. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 9-16, June 2012 (inproceedings)

Abstract
We propose a physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass. The input consists of three polarized images, each captured from the same view point but with a different polarizer angle separated by 45 degrees. The output is the high-quality separation of the reflection and background layers from each of the input images. A main technical challenge for this problem is that the mixing coefficient for the reflection and background layers depends on the angle of incidence and the orientation of the plane of incidence, which are spatially-varying over the pixels of an image. Exploiting physical properties of polarization for a double-surfaced glass medium, we propose an algorithm which automatically finds the optimal separation of the reflection and background layers. Thorough experiments, we demonstrate that our approach can generate superior results to those of previous methods.

Publisher site [BibTex]

Publisher site [BibTex]


An Analysis of Successful Approaches to Human Pose Estimation
An Analysis of Successful Approaches to Human Pose Estimation

Lassner, C.

An Analysis of Successful Approaches to Human Pose Estimation, University of Augsburg, University of Augsburg, May 2012 (mastersthesis)

Abstract
The field of Human Pose Estimation is developing fast and lately leaped forward with the release of the Kinect system. That system reaches a very good perfor- mance for pose estimation using 3D scene information, however pose estimation from 2D color images is not solved reliably yet. There is a vast amount of pub- lications trying to reach this aim, but no compilation of important methods and solution strategies. The aim of this thesis is to fill this gap: it gives an introductory overview over important techniques by analyzing four current (2012) publications in detail. They are chosen such, that during their analysis many frequently used techniques for Human Pose Estimation can be explained. The thesis includes two introductory chapters with a definition of Human Pose Estimation and exploration of the main difficulties, as well as a detailed explanation of frequently used methods. A final chapter presents some ideas on how parts of the analyzed approaches can be recombined and shows some open questions that can be tackled in future work. The thesis is therefore a good entry point to the field of Human Pose Estimation and enables the reader to get an impression of the current state-of-the-art.

pdf [BibTex]

pdf [BibTex]


{High Resolution Surface Reconstruction from Multi-view Aerial Imagery}
High Resolution Surface Reconstruction from Multi-view Aerial Imagery

Calakli, F., Ulusoy, A. O., Restrepo, M. I., Taubin, G., Mundy, J. L.

In 3D Imaging Modeling Processing Visualization Transmission (3DIMPVT), pages: 25-32, IEEE, 2012 (inproceedings)

Abstract
This paper presents a novel framework for surface reconstruction from multi-view aerial imagery of large scale urban scenes, which combines probabilistic volumetric modeling with smooth signed distance surface estimation, to produce very detailed and accurate surfaces. Using a continuous probabilistic volumetric model which allows for explicit representation of ambiguities caused by moving objects, reflective surfaces, areas of constant appearance, and self-occlusions, the algorithm learns the geometry and appearance of a scene from a calibrated image sequence. An online implementation of Bayesian learning precess in GPUs significantly reduces the time required to process a large number of images. The probabilistic volumetric model of occupancy is subsequently used to estimate a smooth approximation of the signed distance function to the surface. This step, which reduces to the solution of a sparse linear system, is very efficient and scalable to large data sets. The proposed algorithm is shown to produce high quality surfaces in challenging aerial scenes where previous methods make large errors in surface localization. The general applicability of the algorithm beyond aerial imagery is confirmed against the Middlebury benchmark.

Video pdf link (url) DOI [BibTex]

Video pdf link (url) DOI [BibTex]


Detection and Tracking of Occluded People
Detection and Tracking of Occluded People

(Best Paper Award)

Tang, S., Andriluka, M., Schiele, B.

In British Machine Vision Conference (BMVC), 2012, BMVC Best Paper Award (inproceedings)

PDF [BibTex]

PDF [BibTex]


3{D} Cardiac Segmentation with Pose-Invariant Higher-Order {MRFs}
3D Cardiac Segmentation with Pose-Invariant Higher-Order MRFs

Xiang, B., Wang, C., Deux, J., Rahmouni, A., Paragios, N.

In IEEE International Symposium on Biomedical Imaging (ISBI), 2012 (inproceedings)

[BibTex]

[BibTex]


Real-time Facial Feature Detection using Conditional Regression Forests
Real-time Facial Feature Detection using Conditional Regression Forests

Dantone, M., Gall, J., Fanelli, G., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2578-2585, IEEE, Providence, RI, USA, 2012 (inproceedings)

code pdf Project Page [BibTex]

code pdf Project Page [BibTex]


Latent Hough Transform for Object Detection
Latent Hough Transform for Object Detection

Razavi, N., Gall, J., Kohli, P., van Gool, L.

In European Conference on Computer Vision (ECCV), 7574, pages: 312-325, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Destination Flow for Crowd Simulation
Destination Flow for Crowd Simulation

Pellegrini, S., Gall, J., Sigal, L., van Gool, L.

In Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, 7585, pages: 162-171, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


From Deformations to Parts: Motion-based Segmentation of {3D} Objects
From Deformations to Parts: Motion-based Segmentation of 3D Objects

Ghosh, S., Sudderth, E., Loper, M., Black, M.

In Advances in Neural Information Processing Systems 25 (NIPS), pages: 2006-2014, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
We develop a method for discovering the parts of an articulated object from aligned meshes of the object in various three-dimensional poses. We adapt the distance dependent Chinese restaurant process (ddCRP) to allow nonparametric discovery of a potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying 3D shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured in dozens of poses, we infer parts which provide quantitatively better deformation predictions than conventional clustering methods.

pdf supplemental code poster link (url) Project Page [BibTex]

pdf supplemental code poster link (url) Project Page [BibTex]


Segmentation of Vessel Geometries from Medical Images Using GPF Deformable Model
Segmentation of Vessel Geometries from Medical Images Using GPF Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Pattern Recognition Applications and Methods, 2012 (inproceedings)

Abstract
We present a method for the reconstruction of vascular geometries from medical images. Image denoising is performed using vessel enhancing diffusion, which can smooth out image noise and enhance vessel structures. The Canny edge detection technique which produces object edges with single pixel width is used for accurate detection of the lumen boundaries. The image gradients are then used to compute the geometric potential field which gives a global representation of the geometric configuration. The deformable model uses a regional constraint to suppress calcified regions for accurate segmentation of the vessel geometries. The proposed framework show high accuracy when applied to the segmentation of the carotid arteries from CT images.

[BibTex]

[BibTex]


SuperFloxels: A Mid-Level Representation for Video Sequences
SuperFloxels: A Mid-Level Representation for Video Sequences

Ravichandran, A., Wang, C., Raptis, M., Soatto, S.

In Analysis and Retrieval of Tracked Events and Motion in Imagery Streams Workshop (ARTEMIS) (in conjunction with ECCV 2012), 2012 (inproceedings)

pdf [BibTex]

pdf [BibTex]


 Implicit Active Contours for N-Dimensional Biomedical Image Segmentation
Implicit Active Contours for N-Dimensional Biomedical Image Segmentation

Si Yong Yeo

In IEEE International Conference on Systems, Man, and Cybernetics, pages: 2855 - 2860, 2012 (inproceedings)

Abstract
The segmentation of shapes from biomedical images has a wide range of uses such as image based modelling and bioimage analysis. In this paper, an active contour model is proposed for the segmentation of N-dimensional biomedical images. The proposed model uses a curvature smoothing flow and an image attraction force derived from the interactions between the geometries of the active contour model and the image objects. The active contour model is formulated using the level set method so as to handle topological changes automatically. The magnitude and orientation of the image attraction force is based on the relative geometric configurations between the active contour model and the image object boundaries. The vector force field is therefore dynamic, and the active contour model can propagate through narrow structures to segment complex shapes efficiently. The proposed model utilizes pixel interactions across the image domain, which gives a coherent representation of the image object shapes. This allows the active contour model to be robust to image noise and weak object edges. The proposed model is compared against widely used active contour models in the segmentation of anatomical shapes from biomedical images. It is shown that the proposed model has several advantages over existing techniques and can be used for the segmentation of biomedical images efficiently.

[BibTex]

[BibTex]


Interactive Object Detection
Interactive Object Detection

Yao, A., Gall, J., Leistner, C., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3242-3249, IEEE, Providence, RI, USA, 2012 (inproceedings)

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Real Time 3D Head Pose Estimation: Recent Achievements and Future Challenges
Real Time 3D Head Pose Estimation: Recent Achievements and Future Challenges

Fanelli, G., Gall, J., van Gool, L.

In 5th International Symposium on Communications, Control and Signal Processing (ISCCSP), 2012 (inproceedings)

data and code pdf Project Page [BibTex]

data and code pdf Project Page [BibTex]


Motion Capture of Hands in Action using Discriminative Salient Points
Motion Capture of Hands in Action using Discriminative Salient Points

Ballan, L., Taneja, A., Gall, J., van Gool, L., Pollefeys, M.

In European Conference on Computer Vision (ECCV), 7577, pages: 640-653, LNCS, Springer, 2012 (inproceedings)

data video pdf supplementary Project Page [BibTex]

data video pdf supplementary Project Page [BibTex]


Sparsity Potentials for Detecting Objects with the Hough Transform
Sparsity Potentials for Detecting Objects with the Hough Transform

Razavi, N., Alvar, N., Gall, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 11.1-11.10, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Metric Learning from Poses for Temporal Clustering of Human Motion
Metric Learning from Poses for Temporal Clustering of Human Motion

L’opez-M’endez, A., Gall, J., Casas, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 49.1-49.12, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

video pdf Project Page Project Page [BibTex]

video pdf Project Page Project Page [BibTex]


Local Context Priors for Object Proposal Generation
Local Context Priors for Object Proposal Generation

Ristin, M., Gall, J., van Gool, L.

In Asian Conference on Computer Vision (ACCV), 7724, pages: 57-70, LNCS, Springer-Verlag, 2012 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Layered segmentation and optical flow estimation over time
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


Consumer Depth Cameras for Computer Vision - Research Topics and Applications
Consumer Depth Cameras for Computer Vision - Research Topics and Applications

Fossati, A., Gall, J., Grabner, H., Ren, X., Konolige, K.

Advances in Computer Vision and Pattern Recognition, Springer, 2012 (book)

workshop publisher's site [BibTex]

workshop publisher's site [BibTex]


Spatial Measures between Human Poses for Classification and Understanding
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


A Geometric Take on Metric Learning
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2005


A quantitative evaluation of video-based {3D} person tracking
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

2005

pdf [BibTex]


Inferring attentional state and kinematics from motor cortical firing rates
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Motor cortical decoding using an autoregressive moving average model
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Fields of Experts: A framework for learning image priors
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


A Flow-Based Approach to Vehicle Detection and Background Mosaicking in Airborne Video
A Flow-Based Approach to Vehicle Detection and Background Mosaicking in Airborne Video

Yalcin, H. C. R. B. M. J. H. M.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Video Proceedings,, pages: 1202, 2005 (patent)

YouTube pdf [BibTex]

YouTube pdf [BibTex]


On the spatial statistics of optical flow
On the spatial statistics of optical flow

(Marr Prize, Honorable Mention)

Roth, S., Black, M. J.

In International Conf. on Computer Vision, International Conf. on Computer Vision, pages: 42-49, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Modeling neural population spiking activity with {Gibbs} distributions
Modeling neural population spiking activity with Gibbs distributions

Wood, F., Roth, S., Black, M. J.

In Advances in Neural Information Processing Systems 18, pages: 1537-1544, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

abstract [BibTex]

abstract [BibTex]

2002


Inferring hand motion from multi-cell recordings in motor cortex using a {Kalman} filter
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Probabilistic inference of hand motion from neural activity in motor cortex
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

Abstract
Statistical learning and probabilistic inference techniques are used to infer the hand position of a subject from multi-electrode recordings of neural activity in motor cortex. First, an array of electrodes provides train- ing data of neural firing conditioned on hand kinematics. We learn a non- parametric representation of this firing activity using a Bayesian model and rigorously compare it with previous models using cross-validation. Second, we infer a posterior probability distribution over hand motion conditioned on a sequence of neural test data using Bayesian inference. The learned firing models of multiple cells are used to define a non- Gaussian likelihood term which is combined with a prior probability for the kinematics. A particle filtering method is used to represent, update, and propagate the posterior distribution over time. The approach is com- pared with traditional linear filtering methods; the results suggest that it may be appropriate for neural prosthetic applications.

pdf [BibTex]

pdf [BibTex]


Automatic detection and tracking of human motion with a view-based representation
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


A layered motion representation with occlusion and compact spatial support
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Implicit probabilistic models of human motion for synthesis and tracking
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial modeling
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]