Header logo is ps


2012


Thumb xl tang2012bmvc
Detection and Tracking of Occluded People

(Best Paper Award)

Tang, S., Andriluka, M., Schiele, B.

In British Machine Vision Conference (BMVC), 2012, BMVC Best Paper Award (inproceedings)

PDF [BibTex]

2012

PDF [BibTex]


Thumb xl segmentation isbi12
3D Cardiac Segmentation with Pose-Invariant Higher-Order MRFs

Xiang, B., Wang, C., Deux, J., Rahmouni, A., Paragios, N.

In IEEE International Symposium on Biomedical Imaging (ISBI), 2012 (inproceedings)

[BibTex]

[BibTex]


Thumb xl facialfeature
Real-time Facial Feature Detection using Conditional Regression Forests

Dantone, M., Gall, J., Fanelli, G., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2578-2585, IEEE, Providence, RI, USA, 2012 (inproceedings)

code pdf Project Page [BibTex]

code pdf Project Page [BibTex]


Thumb xl lht
Latent Hough Transform for Object Detection

Razavi, N., Gall, J., Kohli, P., van Gool, L.

In European Conference on Computer Vision (ECCV), 7574, pages: 312-325, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl destflow
Destination Flow for Crowd Simulation

Pellegrini, S., Gall, J., Sigal, L., van Gool, L.

In Workshop on Analysis and Retrieval of Tracked Events and Motion in Imagery Streams, 7585, pages: 162-171, LNCS, Springer, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl soumyanips
From Deformations to Parts: Motion-based Segmentation of 3D Objects

Ghosh, S., Sudderth, E., Loper, M., Black, M.

In Advances in Neural Information Processing Systems 25 (NIPS), pages: 2006-2014, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
We develop a method for discovering the parts of an articulated object from aligned meshes of the object in various three-dimensional poses. We adapt the distance dependent Chinese restaurant process (ddCRP) to allow nonparametric discovery of a potentially unbounded number of parts, while simultaneously guaranteeing a spatially connected segmentation. To allow analysis of datasets in which object instances have varying 3D shapes, we model part variability across poses via affine transformations. By placing a matrix normal-inverse-Wishart prior on these affine transformations, we develop a ddCRP Gibbs sampler which tractably marginalizes over transformation uncertainty. Analyzing a dataset of humans captured in dozens of poses, we infer parts which provide quantitatively better deformation predictions than conventional clustering methods.

pdf supplemental code poster link (url) Project Page [BibTex]

pdf supplemental code poster link (url) Project Page [BibTex]


Thumb xl icptnra1
Segmentation of Vessel Geometries from Medical Images Using GPF Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Pattern Recognition Applications and Methods, 2012 (inproceedings)

Abstract
We present a method for the reconstruction of vascular geometries from medical images. Image denoising is performed using vessel enhancing diffusion, which can smooth out image noise and enhance vessel structures. The Canny edge detection technique which produces object edges with single pixel width is used for accurate detection of the lumen boundaries. The image gradients are then used to compute the geometric potential field which gives a global representation of the geometric configuration. The deformable model uses a regional constraint to suppress calcified regions for accurate segmentation of the vessel geometries. The proposed framework show high accuracy when applied to the segmentation of the carotid arteries from CT images.

[BibTex]

[BibTex]


Thumb xl superfloxel
SuperFloxels: A Mid-Level Representation for Video Sequences

Ravichandran, A., Wang, C., Raptis, M., Soatto, S.

In Analysis and Retrieval of Tracked Events and Motion in Imagery Streams Workshop (ARTEMIS) (in conjunction with ECCV 2012), 2012 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl smcfv1
Implicit Active Contours for N-Dimensional Biomedical Image Segmentation

Si Yong Yeo

In IEEE International Conference on Systems, Man, and Cybernetics, pages: 2855 - 2860, 2012 (inproceedings)

Abstract
The segmentation of shapes from biomedical images has a wide range of uses such as image based modelling and bioimage analysis. In this paper, an active contour model is proposed for the segmentation of N-dimensional biomedical images. The proposed model uses a curvature smoothing flow and an image attraction force derived from the interactions between the geometries of the active contour model and the image objects. The active contour model is formulated using the level set method so as to handle topological changes automatically. The magnitude and orientation of the image attraction force is based on the relative geometric configurations between the active contour model and the image object boundaries. The vector force field is therefore dynamic, and the active contour model can propagate through narrow structures to segment complex shapes efficiently. The proposed model utilizes pixel interactions across the image domain, which gives a coherent representation of the image object shapes. This allows the active contour model to be robust to image noise and weak object edges. The proposed model is compared against widely used active contour models in the segmentation of anatomical shapes from biomedical images. It is shown that the proposed model has several advantages over existing techniques and can be used for the segmentation of biomedical images efficiently.

[BibTex]

[BibTex]


Thumb xl cells
Interactive Object Detection

Yao, A., Gall, J., Leistner, C., van Gool, L.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3242-3249, IEEE, Providence, RI, USA, 2012 (inproceedings)

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Thumb xl headpose
Real Time 3D Head Pose Estimation: Recent Achievements and Future Challenges

Fanelli, G., Gall, J., van Gool, L.

In 5th International Symposium on Communications, Control and Signal Processing (ISCCSP), 2012 (inproceedings)

data and code pdf Project Page [BibTex]

data and code pdf Project Page [BibTex]


Thumb xl hands
Motion Capture of Hands in Action using Discriminative Salient Points

Ballan, L., Taneja, A., Gall, J., van Gool, L., Pollefeys, M.

In European Conference on Computer Vision (ECCV), 7577, pages: 640-653, LNCS, Springer, 2012 (inproceedings)

data video pdf supplementary Project Page [BibTex]

data video pdf supplementary Project Page [BibTex]


Thumb xl selfsimilarity small
Sparsity Potentials for Detecting Objects with the Hough Transform

Razavi, N., Alvar, N., Gall, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 11.1-11.10, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl metricpose
Metric Learning from Poses for Temporal Clustering of Human Motion

L’opez-M’endez, A., Gall, J., Casas, J., van Gool, L.

In British Machine Vision Conference (BMVC), pages: 49.1-49.12, (Editors: Bowden, Richard and Collomosse, John and Mikolajczyk, Krystian), BMVA Press, 2012 (inproceedings)

video pdf Project Page Project Page [BibTex]

video pdf Project Page Project Page [BibTex]


Thumb xl objectproposal
Local Context Priors for Object Proposal Generation

Ristin, M., Gall, J., van Gool, L.

In Asian Conference on Computer Vision (ACCV), 7724, pages: 57-70, LNCS, Springer-Verlag, 2012 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl cvprlayers12crop
Layered segmentation and optical flow estimation over time

Sun, D., Sudderth, E., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1768-1775, IEEE, 2012 (inproceedings)

Abstract
Layered models provide a compelling approach for estimating image motion and segmenting moving scenes. Previous methods, however, have failed to capture the structure of complex scenes, provide precise object boundaries, effectively estimate the number of layers in a scene, or robustly determine the depth order of the layers. Furthermore, previous methods have focused on optical flow between pairs of frames rather than longer sequences. We show that image sequences with more frames are needed to resolve ambiguities in depth ordering at occlusion boundaries; temporal layer constancy makes this feasible. Our generative model of image sequences is rich but difficult to optimize with traditional gradient descent methods. We propose a novel discrete approximation of the continuous objective in terms of a sequence of depth-ordered MRFs and extend graph-cut optimization methods with new “moves” that make joint layer segmentation and motion estimation feasible. Our optimizer, which mixes discrete and continuous optimization, automatically determines the number of layers and reasons about their depth ordering. We demonstrate the value of layered models, our optimization strategy, and the use of more than two frames on both the Middlebury optical flow benchmark and the MIT layer segmentation benchmark.

pdf sup mat poster Project Page Project Page [BibTex]

pdf sup mat poster Project Page Project Page [BibTex]


Thumb xl amdo2012v2
Spatial Measures between Human Poses for Classification and Understanding

Soren Hauberg, Kim S. Pedersen

In Articulated Motion and Deformable Objects, 7378, pages: 26-36, LNCS, (Editors: Perales, Francisco J. and Fisher, Robert B. and Moeslund, Thomas B.), Springer Berlin Heidelberg, 2012 (inproceedings)

Publishers site Project Page [BibTex]

Publishers site Project Page [BibTex]


Thumb xl nips teaser
A Geometric Take on Metric Learning

Hauberg, S., Freifeld, O., Black, M. J.

In Advances in Neural Information Processing Systems (NIPS) 25, pages: 2033-2041, (Editors: P. Bartlett and F.C.N. Pereira and C.J.C. Burges and L. Bottou and K.Q. Weinberger), MIT Press, 2012 (inproceedings)

Abstract
Multi-metric learning techniques learn local metric tensors in different parts of a feature space. With such an approach, even simple classifiers can be competitive with the state-of-the-art because the distance measure locally adapts to the structure of the data. The learned distance measure is, however, non-metric, which has prevented multi-metric learning from generalizing to tasks such as dimensionality reduction and regression in a principled way. We prove that, with appropriate changes, multi-metric learning corresponds to learning the structure of a Riemannian manifold. We then show that this structure gives us a principled way to perform dimensionality reduction and regression according to the learned metrics. Algorithmically, we provide the first practical algorithm for computing geodesics according to the learned metrics, as well as algorithms for computing exponential and logarithmic maps on the Riemannian manifold. Together, these tools let many Euclidean algorithms take advantage of multi-metric learning. We illustrate the approach on regression and dimensionality reduction tasks that involve predicting measurements of the human body from shape data.

PDF Youtube Suppl. material Poster Project Page [BibTex]

PDF Youtube Suppl. material Poster Project Page [BibTex]

2009


Thumb xl teaser wacv2010
Ball Joints for Marker-less Human Motion Capture

Pons-Moll, G., Rosenhahn, B.

In IEEE Workshop on Applications of Computer Vision (WACV),, December 2009 (inproceedings)

pdf [BibTex]

2009

pdf [BibTex]


no image
Background Subtraction Based on Rank Constraint for Point Trajectories

Ahmad, A., Del Bue, A., Lima, P.

In pages: 1-3, October 2009 (inproceedings)

Abstract
This work deals with a background subtraction algorithm for a fish-eye lens camera having 3 degrees of freedom, 2 in translation and 1 in rotation. The core assumption in this algorithm is that the background is considered to be composed of a dominant static plane in the world frame. The novelty lies in developing a rank-constraint based background subtraction for equidistant projection model, a property of the fish-eye lens. A detail simulation result is presented to support the hypotheses explained in this paper.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser cinc
Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images

Pons-Moll, G., Crosas, C., Tadmor, G., MacLeod, R., Rosenhahn, B., Brooks, D.

In IEEE Computers in Cardiology (CINC), September 2009 (inproceedings)

[BibTex]

[BibTex]


Thumb xl ascc09
Computer cursor control by motor cortical signals in humans with tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Black, M. J.

In 7th Asian Control Conference, ASCC09, pages: 988-993, Hong Kong, China, August 2009 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Classification of colon polyps in NBI endoscopy using vascularization features

Stehle, T., Auer, R., Gross, S., Behrens, A., Wulff, J., Aach, T., Winograd, R., Trautwein, C., Tischendorf, J.

In Medical Imaging 2009: Computer-Aided Diagnosis, 7260, (Editors: N. Karssemeijer and M. L. Giger), SPIE, February 2009 (inproceedings)

Abstract
The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer and, therefore, do not need to be removed. By contrast, adenomas have a strong tendency to become malignant. Therefore, they have to be removed immediately via polypectomy. For this reason, a method to differentiate reliably adenomas from hyperplasias during a preventive medical endoscopy of the colon (colonoscopy) is highly desirable. A recent study has shown that it is possible to distinguish both types of polyps visually by means of their vascularization. Adenomas exhibit a large amount of blood vessel capillaries on their surface whereas hyperplasias show only few of them. In this paper, we show the feasibility of computer-based classification of colon polyps using vascularization features. The proposed classification algorithm consists of several steps: For the critical part of vessel segmentation, we implemented and compared two segmentation algorithms. After a skeletonization of the detected blood vessel candidates, we used the results as seed points for the Fast Marching algorithm which is used to segment the whole vessel lumen. Subsequently, features are computed from this segmentation which are then used to classify the polyps. In leave-one-out tests on our polyp database (56 polyps), we achieve a correct classification rate of approximately 90%.

DOI [BibTex]

DOI [BibTex]


Thumb xl 3dim09
One-shot scanning using de bruijn spaced grids

Ulusoy, A., Calakli, F., Taubin, G.

In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages: 1786-1792, IEEE, 2009 (inproceedings)

Abstract
In this paper we present a new one-shot method to reconstruct the shape of dynamic 3D objects and scenes based on active illumination. In common with other related prior-art methods, a static grid pattern is projected onto the scene, a video sequence of the illuminated scene is captured, a shape estimate is produced independently for each video frame, and the one-shot property is realized at the expense of space resolution. The main challenge in grid-based one-shot methods is to engineer the pattern and algorithms so that the correspondence between pattern grid points and their images can be established very fast and without uncertainty. We present an efficient one-shot method which exploits simple geometric constraints to solve the correspondence problem. We also introduce De Bruijn spaced grids, a novel grid pattern, and show with strong empirical data that the resulting scheme is much more robust compared to those based on uniform spaced grids.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl iccv09
Estimating human shape and pose from a single image

Guan, P., Weiss, A., Balan, A., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1381-1388, 2009 (inproceedings)

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]


Thumb xl screen shot 2012 02 21 at 15.56.00  2
On feature combination for multiclass object classification

Gehler, P., Nowozin, S.

In Proceedings of the Twelfth IEEE International Conference on Computer Vision, pages: 221-228, 2009, oral presentation (inproceedings)

project page, code, data GoogleScholar pdf DOI [BibTex]

project page, code, data GoogleScholar pdf DOI [BibTex]


Thumb xl tracking iccv09
Segmentation, Ordering and Multi-object Tracking Using Graphical Models

Wang, C., Gorce, M. D. L., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2009 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Evaluating the potential of primary motor and premotor cortex for mutltidimensional neuroprosthetic control of complete reaching and grasping actions

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009, Online (conference)

[BibTex]

[BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.02.32 pm
Modeling and Evaluation of Human-to-Robot Mapping of Grasps

Romero, J., Kjellström, H., Kragic, D.

In International Conference on Advanced Robotics (ICAR), pages: 1-6, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


Thumb xl nips2009b
An additive latent feature model for transparent object recognition

Fritz, M., Black, M., Bradski, G., Karayev, S., Darrell, T.

In Advances in Neural Information Processing Systems 22, NIPS, pages: 558-566, MIT Press, 2009 (inproceedings)

pdf slides [BibTex]

pdf slides [BibTex]


Thumb xl screen shot 2012 06 06 at 11.24.14 am
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers

Gehler, P., Nowozin, S.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2836-2843, IEEE Computer Society, 2009 (inproceedings)

doi project page pdf [BibTex]

doi project page pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.04.52 pm
Monocular Real-Time 3D Articulated Hand Pose Estimation

Romero, J., Kjellström, H., Kragic, D.

In IEEE-RAS International Conference on Humanoid Robots, pages: 87-92, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


Thumb xl snap
Grasp Recognition and Mapping on Humanoid Robots

Do, M., Romero, J., Kjellström, H., Azad, P., Asfour, T., Kragic, D., Dillmann, R.

In IEEE-RAS International Conference on Humanoid Robots, pages: 465-471, 2009 (inproceedings)

Pdf Video [BibTex]

Pdf Video [BibTex]


Thumb xl teaser wc
4D Cardiac Segmentation of the Epicardium and Left Ventricle

Pons-Moll, G., Tadmor, G., MacLeod, R. S., Rosenhahn, B., Brooks, D. H.

In World Congress of Medical Physics and Biomedical Engineering (WC), 2009 (inproceedings)

[BibTex]

[BibTex]


Thumb xl bmvc1
Geometric Potential Force for the Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 20th British Machine Vision Conference, pages: 1-11, 2009 (inproceedings)

Abstract
We propose a new external force field for deformable models which can be conve- niently generalized to high dimensions. The external force field is based on hypothesized interactions between the relative geometries of the deformable model and image gradi- ents. The evolution of the deformable model is solved using the level set method. The dynamic interaction forces between the geometries can greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and in dealing with weak image edges. The new deformable model can handle arbi- trary cross-boundary initializations. Here, we show that the proposed method achieve significant improvements when compared against existing state-of-the-art techniques.

[BibTex]

[BibTex]


Thumb xl cmbe
Level Set Based Automatic Segmentation of Human Aorta

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Computational & Mathematical Biomedical Engineering, pages: 242-245, 2009 (inproceedings)

[BibTex]

[BibTex]


Thumb xl orthonormaity
In Defense of Orthonormality Constraints for Nonrigid Structure from Motion

Akhter, I., Sheikh, Y., Khan, S.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages: 2447-2453, 2009 (inproceedings)

Abstract
In factorization approaches to nonrigid structure from motion, the 3D shape of a deforming object is usually modeled as a linear combination of a small number of basis shapes. The original approach to simultaneously estimate the shape basis and nonrigid structure exploited orthonormality constraints for metric rectification. Recently, it has been asserted that structure recovery through orthonormality constraints alone is inherently ambiguous and cannot result in a unique solution. This assertion has been accepted as conventional wisdom and is the justification of many remedial heuristics in literature. Our key contribution is to prove that orthonormality constraints are in fact sufficient to recover the 3D structure from image observations alone. We characterize the true nature of the ambiguity in using orthonormality constraints for the shape basis and show that it has no impact on structure reconstruction. We conclude from our experimentation that the primary challenge in using shape basis for nonrigid structure from motion is the difficulty in the optimization problem rather than the ambiguity in orthonormality constraints.

pdf [BibTex]

pdf [BibTex]


no image
Dynamic distortion correction for endoscopy systems with exchangeable optics

Stehle, T., Hennes, M., Gross, S., Behrens, A., Wulff, J., Aach, T.

In Bildverarbeitung für die Medizin 2009, pages: 142-146, Springer Berlin Heidelberg, 2009 (inproceedings)

Abstract
Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Computational mechanisms for the recognition of time sequences of images in the visual cortex

Tan, C., Jhuang, H., Singer, J., Serre, T., Sheinberg, D., Poggio, T.

Society for Neuroscience, 2009 (conference)

pdf [BibTex]

pdf [BibTex]


Thumb xl vriphys2009
Interactive Inverse Kinematics for Monocular Motion Estimation

Morten Engell-Norregaard, Soren Hauberg, Jerome Lapuyade, Kenny Erleben, Kim S. Pedersen

In The 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), 2009 (inproceedings)

Conference site Paper site [BibTex]

Conference site Paper site [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.17.40 pm
A Comprehensive Grasp Taxonomy

Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.

In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Population coding of ground truth motion in natural scenes in the early visual system

Stanley, G., Black, M. J., Lewis, J., Desbordes, G., Jin, J., Alonso, J.

COSYNE, 2009 (conference)

[BibTex]

[BibTex]


Thumb xl miua1
Segmentation of Human Upper Airway Using a Level Set Based Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 13th Medical Image Understanding and Analysis, 2009 (inproceedings)

[BibTex]

[BibTex]


Thumb xl emmcvpr2009
Three Dimensional Monocular Human Motion Analysis in End-Effector Space

Soren Hauberg, Jerome Lapuyade, Morten Engell-Norregaard, Kenny Erleben, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681, pages: 235-248, Lecture Notes in Computer Science, (Editors: Cremers, Daniel and Boykov, Yuri and Blake, Andrew and Schmidt, Frank), Springer Berlin Heidelberg, 2009 (inproceedings)

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]


no image
Decoding visual motion from correlated firing of thalamic neurons

Stanley, G. B., Black, M. J., Desbordes, G., Jin, J., Wang, Y., Alonso, J.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009 (conference)

[BibTex]

[BibTex]

2005


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

2005

pdf [BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2005
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]