Header logo is ps


2015


Thumb xl img sceneflow
Object Scene Flow for Autonomous Vehicles

Menze, M., Geiger, A.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR) 2015, pages: 3061-3070, IEEE, June 2015 (inproceedings)

Abstract
This paper proposes a novel model and dataset for 3D scene flow estimation with an application to autonomous driving. Taking advantage of the fact that outdoor scenes often decompose into a small number of independently moving objects, we represent each element in the scene by its rigid motion parameters and each superpixel by a 3D plane as well as an index to the corresponding object. This minimal representation increases robustness and leads to a discrete-continuous CRF where the data term decomposes into pairwise potentials between superpixels and objects. Moreover, our model intrinsically segments the scene into its constituting dynamic components. We demonstrate the performance of our model on existing benchmarks as well as a novel realistic dataset with scene flow ground truth. We obtain this dataset by annotating 400 dynamic scenes from the KITTI raw data collection using detailed 3D CAD models for all vehicles in motion. Our experiments also reveal novel challenges which can't be handled by existing methods.

pdf abstract suppmat DOI [BibTex]

2015

pdf abstract suppmat DOI [BibTex]


Thumb xl ijazteaser
Pose-Conditioned Joint Angle Limits for 3D Human Pose Reconstruction

Akhter, I., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 1446-1455, June 2015 (inproceedings)

Abstract
The estimation of 3D human pose from 2D joint locations is central to many vision problems involving the analysis of people in images and video. To address the fact that the problem is inherently ill posed, many methods impose a prior over human poses. Unfortunately these priors admit invalid poses because they do not model how joint-limits vary with pose. Here we make two key contributions. First, we collected a motion capture dataset that explores a wide range of human poses. From this we learn a pose-dependent model of joint limits that forms our prior. The dataset and the prior will be made publicly available. Second, we define a general parameterization of body pose and a new, multistage, method to estimate 3D pose from 2D joint locations that uses an over-complete dictionary of human poses. Our method shows good generalization while avoiding impossible poses. We quantitatively compare our method with recent work and show state-of-the-art results on 2D to 3D pose estimation using the CMU mocap dataset. We also show superior results on manual annotations on real images and automatic part-based detections on the Leeds sports pose dataset.

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]

pdf Extended Abstract video project/data/code poster DOI Project Page Project Page [BibTex]


Thumb xl jonasteaser
Efficient Sparse-to-Dense Optical Flow Estimation using a Learned Basis and Layers

Wulff, J., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 120-130, June 2015 (inproceedings)

Abstract
We address the elusive goal of estimating optical flow both accurately and efficiently by adopting a sparse-to-dense approach. Given a set of sparse matches, we regress to dense optical flow using a learned set of full-frame basis flow fields. We learn the principal components of natural flow fields using flow computed from four Hollywood movies. Optical flow fields are then compactly approximated as a weighted sum of the basis flow fields. Our new PCA-Flow algorithm robustly estimates these weights from sparse feature matches. The method runs in under 300ms/frame on the MPI-Sintel dataset using a single CPU and is more accurate and significantly faster than popular methods such as LDOF and Classic+NL. The results, however, are too smooth for some applications. Consequently, we develop a novel sparse layered flow method in which each layer is represented by PCA-flow. Unlike existing layered methods, estimation is fast because it uses only sparse matches. We combine information from different layers into a dense flow field using an image-aware MRF. The resulting PCA-Layers method runs in 3.6s/frame, is significantly more accurate than PCA-flow and achieves state-of-the-art performance in occluded regions on MPI-Sintel.

pdf Extended Abstract Supplemental Material Poster Code Project Page Project Page [BibTex]


Thumb xl teaser
Permutohedral Lattice CNNs

Kiefel, M., Jampani, V., Gehler, P. V.

In ICLR Workshop Track, May 2015 (inproceedings)

Abstract
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation. Its use allows for a generalization of the convolution type found in current (spatial) convolutional network architectures.

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl jampani15aistats teaser
Consensus Message Passing for Layered Graphical Models

Jampani, V., Eslami, S. M. A., Tarlow, D., Kohli, P., Winn, J.

In Eighteenth International Conference on Artificial Intelligence and Statistics (AISTATS), 38, pages: 425-433, JMLR Workshop and Conference Proceedings, May 2015 (inproceedings)

Abstract
Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.

online pdf supplementary link (url) [BibTex]

online pdf supplementary link (url) [BibTex]


Thumb xl screenshot area 2015 07 27 010243
Active Learning for Abstract Models of Collectives

Schiendorfer, A., Lassner, C., Anders, G., Reif, W., Lienhart, R.

In 3rd Workshop on Self-optimisation in Organic and Autonomic Computing Systems (SAOS), March 2015 (inproceedings)

Abstract
Organizational structures such as hierarchies provide an effective means to deal with the increasing complexity found in large-scale energy systems. In hierarchical systems, the concrete functions describing the subsystems can be replaced by abstract piecewise linear functions to speed up the optimization process. However, if the data points are weakly informative the resulting abstracted optimization problem introduces severe errors and exhibits bad runtime performance. Furthermore, obtaining additional point labels amounts to solving computationally hard optimization problems. Therefore, we propose to apply methods from active learning to search for informative inputs. We present first results experimenting with Decision Forests and Gaussian Processes that motivate further research. Using points selected by Decision Forests, we could reduce the average mean-squared error of the abstract piecewise linear function by one third.

code (hosted on github) pdf [BibTex]

code (hosted on github) pdf [BibTex]


Thumb xl untitled
Efficient Facade Segmentation using Auto-Context

Jampani, V., Gadde, R., Gehler, P. V.

In Applications of Computer Vision (WACV), 2015 IEEE Winter Conference on, pages: 1038-1045, IEEE, January 2015 (inproceedings)

Abstract
In this paper we propose a system for the problem of facade segmentation. Building facades are highly structured images and consequently most methods that have been proposed for this problem, aim to make use of this strong prior information. We are describing a system that is almost domain independent and consists of standard segmentation methods. A sequence of boosted decision trees is stacked using auto-context features and learned using the stacked generalization technique. We find that this, albeit standard, technique performs better, or equals, all previous published empirical results on all available facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test time inference.

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]

website pdf supplementary IEEE page link (url) DOI Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 004943
Norm-induced entropies for decision forests

Lassner, C., Lienhart, R.

IEEE Winter Conference on Applications of Computer Vision (WACV), January 2015 (conference)

Abstract
The entropy measurement function is a central element of decision forest induction. The Shannon entropy and other generalized entropies such as the Renyi and Tsallis entropy are designed to fulfill the Khinchin-Shannon axioms. Whereas these axioms are appropriate for physical systems, they do not necessarily model well the artificial system of decision forest induction. In this paper, we show that when omitting two of the four axioms, every norm induces an entropy function. The remaining two axioms are sufficient to describe the requirements for an entropy function in the decision forest context. Furthermore, we introduce and analyze the p-norm-induced entropy, show relations to existing entropies and the relation to various heuristics that are commonly used for decision forest training. In experiments with classification, regression and the recently introduced Hough forests, we show how the discrete and differential form of the new entropy can be used for forest induction and how the functions can simply be fine-tuned. The experiments indicate that the impact of the entropy function is limited, however can be a simple and useful post-processing step for optimizing decision forests for high performance applications.

pdf code [BibTex]

pdf code [BibTex]


Thumb xl lrmmbotperson withmbot
Dataset Suite for Benchmarking Perception in Robotics

Ahmad, A., Lima, P.

In International Conference on Intelligent Robots and Systems (IROS) 2015, 2015 (inproceedings)

[BibTex]

[BibTex]


Thumb xl flowcap im
FlowCap: 2D Human Pose from Optical Flow

Romero, J., Loper, M., Black, M. J.

In Pattern Recognition, Proc. 37th German Conference on Pattern Recognition (GCPR), LNCS 9358, pages: 412-423, Springer, 2015 (inproceedings)

Abstract
We estimate 2D human pose from video using only optical flow. The key insight is that dense optical flow can provide information about 2D body pose. Like range data, flow is largely invariant to appearance but unlike depth it can be directly computed from monocular video. We demonstrate that body parts can be detected from dense flow using the same random forest approach used by the Microsoft Kinect. Unlike range data, however, when people stop moving, there is no optical flow and they effectively disappear. To address this, our FlowCap method uses a Kalman filter to propagate body part positions and ve- locities over time and a regression method to predict 2D body pose from part centers. No range sensor is required and FlowCap estimates 2D human pose from monocular video sources containing human motion. Such sources include hand-held phone cameras and archival television video. We demonstrate 2D body pose estimation in a range of scenarios and show that the method works with real-time optical flow. The results suggest that optical flow shares invariances with range data that, when complemented with tracking, make it valuable for pose estimation.

video pdf preprint Project Page Project Page [BibTex]

video pdf preprint Project Page Project Page [BibTex]


Thumb xl mbot
Towards Optimal Robot Navigation in Urban Homes

Ventura, R., Ahmad, A.

In RoboCup 2014: Robot World Cup XVIII, pages: 318-331, Lecture Notes in Computer Science ; 8992, Springer, Cham, Switzerland, 2015 (inproceedings)

Abstract
The work presented in this paper is motivated by the goal of dependable autonomous navigation of mobile robots. This goal is a fundamental requirement for having autonomous robots in spaces such as domestic spaces and public establishments, left unattended by technical staff. In this paper we tackle this problem by taking an optimization approach: on one hand, we use a Fast Marching Approach for path planning, resulting in optimal paths in the absence of unmapped obstacles, and on the other hand we use a Dynamic Window Approach for guidance. To the best of our knowledge, the combination of these two methods is novel. We evaluate the approach on a real mobile robot, capable of moving at high speed. The evaluation makes use of an external ground truth system. We report controlled experiments that we performed, including the presence of people moving randomly nearby the robot. In our long term experiments we report a total distance of 18 km traveled during 11 hours of movement time.

DOI [BibTex]

DOI [BibTex]


Thumb xl geiger
Joint 3D Object and Layout Inference from a single RGB-D Image

(Best Paper Award)

Geiger, A., Wang, C.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 183-195, Lecture Notes in Computer Science, Springer International Publishing, 2015 (inproceedings)

Abstract
Inferring 3D objects and the layout of indoor scenes from a single RGB-D image captured with a Kinect camera is a challenging task. Towards this goal, we propose a high-order graphical model and jointly reason about the layout, objects and superpixels in the image. In contrast to existing holistic approaches, our model leverages detailed 3D geometry using inverse graphics and explicitly enforces occlusion and visibility constraints for respecting scene properties and projective geometry. We cast the task as MAP inference in a factor graph and solve it efficiently using message passing. We evaluate our method with respect to several baselines on the challenging NYUv2 indoor dataset using 21 object categories. Our experiments demonstrate that the proposed method is able to infer scenes with a large degree of clutter and occlusions.

pdf suppmat video project DOI [BibTex]

pdf suppmat video project DOI [BibTex]


Thumb xl screen shot 2015 05 07 at 11.56.54
3D Object Class Detection in the Wild

Pepik, B., Stark, M., Gehler, P., Ritschel, T., Schiele, B.

In Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), IEEE, 2015 (inproceedings)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl menze
Discrete Optimization for Optical Flow

Menze, M., Heipke, C., Geiger, A.

In German Conference on Pattern Recognition (GCPR), 9358, pages: 16-28, Springer International Publishing, 2015 (inproceedings)

Abstract
We propose to look at large-displacement optical flow from a discrete point of view. Motivated by the observation that sub-pixel accuracy is easily obtained given pixel-accurate optical flow, we conjecture that computing the integral part is the hardest piece of the problem. Consequently, we formulate optical flow estimation as a discrete inference problem in a conditional random field, followed by sub-pixel refinement. Naive discretization of the 2D flow space, however, is intractable due to the resulting size of the label set. In this paper, we therefore investigate three different strategies, each able to reduce computation and memory demands by several orders of magnitude. Their combination allows us to estimate large-displacement optical flow both accurately and efficiently and demonstrates the potential of discrete optimization for optical flow. We obtain state-of-the-art performance on MPI Sintel and KITTI.

pdf suppmat project DOI [BibTex]

pdf suppmat project DOI [BibTex]


Thumb xl isa
Joint 3D Estimation of Vehicles and Scene Flow

Menze, M., Heipke, C., Geiger, A.

In Proc. of the ISPRS Workshop on Image Sequence Analysis (ISA), 2015 (inproceedings)

Abstract
Three-dimensional reconstruction of dynamic scenes is an important prerequisite for applications like mobile robotics or autonomous driving. While much progress has been made in recent years, imaging conditions in natural outdoor environments are still very challenging for current reconstruction and recognition methods. In this paper, we propose a novel unified approach which reasons jointly about 3D scene flow as well as the pose, shape and motion of vehicles in the scene. Towards this goal, we incorporate a deformable CAD model into a slanted-plane conditional random field for scene flow estimation and enforce shape consistency between the rendered 3D models and the parameters of all superpixels in the image. The association of superpixels to objects is established by an index variable which implicitly enables model selection. We evaluate our approach on the challenging KITTI scene flow dataset in terms of object and scene flow estimation. Our results provide a prove of concept and demonstrate the usefulness of our method.

PDF [BibTex]

PDF [BibTex]


Thumb xl teaser
A Setup for multi-UAV hardware-in-the-loop simulations

Odelga, M., Stegagno, P., Bülthoff, H., Ahmad, A.

In pages: 204-210, IEEE, 2015 (inproceedings)

Abstract
In this paper, we present a hardware in the loop simulation setup for multi-UAV systems. With our setup, we are able to command the robots simulated in Gazebo, a popular open source ROS-enabled physical simulator, using the computational units that are embedded on our quadrotor UAVs. Hence, we can test in simulation not only the correct execution of algorithms, but also the computational feasibility directly on the robot hardware. In addition, since our setup is inherently multi-robot, we can also test the communication flow among the robots. We provide two use cases to show the characteristics of our setup.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl subimage
Smooth Loops from Unconstrained Video

Sevilla-Lara, L., Wulff, J., Sunkavalli, K., Shechtman, E.

In Computer Graphics Forum (Proceedings of EGSR), 34(4):99-107, 2015 (inproceedings)

Abstract
Converting unconstrained video sequences into videos that loop seamlessly is an extremely challenging problem. In this work, we take the first steps towards automating this process by focusing on an important subclass of videos containing a single dominant foreground object. Our technique makes two novel contributions over previous work: first, we propose a correspondence-based similarity metric to automatically identify a good transition point in the video where the appearance and dynamics of the foreground are most consistent. Second, we develop a technique that aligns both the foreground and background about this transition point using a combination of global camera path planning and patch-based video morphing. We demonstrate that this allows us to create natural, compelling, loopy videos from a wide range of videos collected from the internet.

pdf link (url) DOI Project Page [BibTex]

pdf link (url) DOI Project Page [BibTex]


Thumb xl result overlayed
Onboard robust person detection and tracking for domestic service robots

Sanz, D., Ahmad, A., Lima, P.

In Robot 2015: Second Iberian Robotics Conference, pages: 547-559, Advances in Intelligent Systems and Computing ; 418, Springer, Cham, Switzerland, 2015 (inproceedings)

Abstract
Domestic assistance for the elderly and impaired people is one of the biggest upcoming challenges of our society. Consequently, in-home care through domestic service robots is identified as one of the most important application area of robotics research. Assistive tasks may range from visitor reception at the door to catering for owner's small daily necessities within a house. Since most of these tasks require the robot to interact directly with humans, a predominant robot functionality is to detect and track humans in real time: either the owner of the robot or visitors at home or both. In this article we present a robust method for such a functionality that combines depth-based segmentation and visual detection. The robustness of our method lies in its capability to not only identify partially occluded humans (e.g., with only torso visible) but also to do so in varying lighting conditions. We thoroughly validate our method through extensive experiments on real robot datasets and comparisons with the ground truth. The datasets were collected on a home-like environment set up within the context of RoboCup@Home and RoCKIn@Home competitions.

DOI [BibTex]

DOI [BibTex]

2013


Thumb xl iccv2013 siyu
Learning People Detectors for Tracking in Crowded Scenes

Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., Schiele, B.

In 2013 IEEE International Conference on Computer Vision, pages: 1049-1056, IEEE, December 2013 (inproceedings)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


Thumb xl thumb
Strong Appearance and Expressive Spatial Models for Human Pose Estimation

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In International Conference on Computer Vision (ICCV), pages: 3487 - 3494 , IEEE, December 2013 (inproceedings)

Abstract
Typical approaches to articulated pose estimation combine spatial modelling of the human body with appearance modelling of body parts. This paper aims to push the state-of-the-art in articulated pose estimation in two ways. First we explore various types of appearance representations aiming to substantially improve the body part hypotheses. And second, we draw on and combine several recently proposed powerful ideas such as more flexible spatial models as well as image-conditioned spatial models. In a series of experiments we draw several important conclusions: (1) we show that the proposed appearance representations are complementary; (2) we demonstrate that even a basic tree-structure spatial human body model achieves state-of-the-art performance when augmented with the proper appearance representation; and (3) we show that the combination of the best performing appearance model with a flexible image-conditioned spatial model achieves the best result, significantly improving over the state of the art, on the "Leeds Sports Poses'' and "Parse'' benchmarks.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 004304
Methods and Applications for Distance Based ANN Training

Lassner, C., Lienhart, R.

In IEEE International Conference on Machine Learning and Applications (ICMLA), December 2013 (inproceedings)

Abstract
Feature learning has the aim to take away the hassle of hand-designing features for machine learning tasks. Since the feature design process is tedious and requires a lot of experience, an automated solution is of great interest. However, an important problem in this field is that usually no objective values are available to fit a feature learning function to. Artificial Neural Networks are a sufficiently flexible tool for function approximation to be able to avoid this problem. We show how the error function of an ANN can be modified such that it works solely with objective distances instead of objective values. We derive the adjusted rules for backpropagation through networks with arbitrary depths and include practical considera- tions that must be taken into account to apply difference based learning successfully. On all three benchmark datasets we use, linear SVMs trained on automatically learned ANN features outperform RBF kernel SVMs trained on the raw data. This can be achieved in a feature space with up to only a tenth of dimensions of the number of original data dimensions. We conclude our work with two experiments on distance based ANN training in two further fields: data visualization and outlier detection.

pdf [BibTex]

pdf [BibTex]


Thumb xl zhang
Understanding High-Level Semantics by Modeling Traffic Patterns

Zhang, H., Geiger, A., Urtasun, R.

In International Conference on Computer Vision, pages: 3056-3063, Sydney, Australia, December 2013 (inproceedings)

Abstract
In this paper, we are interested in understanding the semantics of outdoor scenes in the context of autonomous driving. Towards this goal, we propose a generative model of 3D urban scenes which is able to reason not only about the geometry and objects present in the scene, but also about the high-level semantics in the form of traffic patterns. We found that a small number of patterns is sufficient to model the vast majority of traffic scenes and show how these patterns can be learned. As evidenced by our experiments, this high-level reasoning significantly improves the overall scene estimation as well as the vehicle-to-lane association when compared to state-of-the-art approaches. All data and code will be made available upon publication.

pdf [BibTex]

pdf [BibTex]


Thumb xl thumb
A Non-parametric Bayesian Network Prior of Human Pose

Lehrmann, A. M., Gehler, P., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision (ICCV), pages: 1281-1288, December 2013 (inproceedings)

Abstract
Having a sensible prior of human pose is a vital ingredient for many computer vision applications, including tracking and pose estimation. While the application of global non-parametric approaches and parametric models has led to some success, finding the right balance in terms of flexibility and tractability, as well as estimating model parameters from data has turned out to be challenging. In this work, we introduce a sparse Bayesian network model of human pose that is non-parametric with respect to the estimation of both its graph structure and its local distributions. We describe an efficient sampling scheme for our model and show its tractability for the computation of exact log-likelihoods. We empirically validate our approach on the Human 3.6M dataset and demonstrate superior performance to global models and parametric networks. We further illustrate our model's ability to represent and compose poses not present in the training set (compositionality) and describe a speed-accuracy trade-off that allows realtime scoring of poses.

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Thumb xl jhuang
Towards understanding action recognition

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3192-3199, IEEE, Sydney, Australia, December 2013 (inproceedings)

Abstract
Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using thoroughly-annotated data of human actions. We annotate human Joints for the HMDB dataset (J-HMDB). This annotation can be used to derive ground truth optical flow and segmentation. We evaluate current methods using this dataset and systematically replace the output of various algorithms with ground truth. This enables us to discover what is important – for example, should we work on improving flow algorithms, estimating human bounding boxes, or enabling pose estimation? In summary, we find that highlevel pose features greatly outperform low/mid level features; in particular, pose over time is critical, but current pose estimation algorithms are not yet reliable enough to provide this information. We also find that the accuracy of a top-performing action recognition framework can be greatly increased by refining the underlying low/mid level features; this suggests it is important to improve optical flow and human detection algorithms. Our analysis and JHMDB dataset should facilitate a deeper understanding of action recognition algorithms.

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]


Thumb xl embs2013
Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia

Homer, M., Harrison, M., Black, M. J., Perge, J., Cash, S., Friehs, G., Hochberg, L.

In 6th International IEEE EMBS Conference on Neural Engineering, pages: 715-718, San Diego, November 2013 (inproceedings)

Abstract
Kalman filtering is a common method to decode neural signals from the motor cortex. In clinical research investigating the use of intracortical brain computer interfaces (iBCIs), the technique enabled people with tetraplegia to control assistive devices such as a computer or robotic arm directly from their neural activity. For reaching movements, the Kalman filter typically estimates the instantaneous endpoint velocity of the control device. Here, we analyzed attempted arm/hand movements by people with tetraplegia to control a cursor on a computer screen to reach several circular targets. A standard velocity Kalman filter is enhanced to additionally decode for the cursor’s position. We then mix decoded velocity and position to generate cursor movement commands. We analyzed data, offline, from two participants across six sessions. Root mean squared error between the actual and estimated cursor trajectory improved by 12.2 ±10.5% (pairwise t-test, p<0.05) as compared to a standard velocity Kalman filter. The findings suggest that simultaneously decoding for intended velocity and position and using them both to generate movement commands can improve the performance of iBCIs.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Multi-Robot Cooperative Object Tracking Based on Particle Filters

Ahmad, A., Lima, P.

In Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (inproceedings)

Abstract
This article presents a cooperative approach for tracking a moving object by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl bmvc teaser
Distribution Fields with Adaptive Kernels for Large Displacement Image Alignment

Mears, B., Sevilla-Lara, L., Learned-Miller, E.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

Abstract
While region-based image alignment algorithms that use gradient descent can achieve sub-pixel accuracy when they converge, their convergence depends on the smoothness of the image intensity values. Image smoothness is often enforced through the use of multiscale approaches in which images are smoothed and downsampled. Yet, these approaches typically use fixed smoothing parameters which may be appropriate for some images but not for others. Even for a particular image, the optimal smoothing parameters may depend on the magnitude of the transformation. When the transformation is large, the image should be smoothed more than when the transformation is small. Further, with gradient-based approaches, the optimal smoothing parameters may change with each iteration as the algorithm proceeds towards convergence. We address convergence issues related to the choice of smoothing parameters by deriving a Gauss-Newton gradient descent algorithm based on distribution fields (DFs) and proposing a method to dynamically select smoothing parameters at each iteration. DF and DF-like representations have previously been used in the context of tracking. In this work we incorporate DFs into a full affine model for region-based alignment and simultaneously search over parameterized sets of geometric and photometric transforms. We use a probabilistic interpretation of DFs to select smoothing parameters at each step in the optimization and show that this results in improved convergence rates.

pdf code [BibTex]

pdf code [BibTex]


Thumb xl teaser mrg
Metric Regression Forests for Human Pose Estimation

(Best Science Paper Award)

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl thumb
Poselet conditioned pictorial structures

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 588 - 595, IEEE, Portland, OR, June 2013 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl thumb
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


no image
Perception-driven multi-robot formation control

Ahmad, A., Nascimento, T., Conceicao, A., Moreira, A., Lima, P.

In pages: 1851-1856, IEEE, May 2013 (inproceedings)

Abstract
Maximizing the performance of cooperative perception of a tracked target by a team of mobile robots while maintaining the team's formation is the core problem addressed in this work. We propose a solution by integrating the controller and the estimator modules in a formation control loop. The controller module is a distributed non-linear model predictive controller and the estimator module is based on a particle filter for cooperative target tracking. A formal description of the integration followed by simulation and real robot results on two different teams of homogeneous robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target's cooperative estimate while complying with the performance criteria such as keeping a pre-set distance between the team-mates and/or the target and obstacle avoidance.

DOI [BibTex]

DOI [BibTex]


no image
Cooperative Robot Localization and Target Tracking based on Least Squares Minimization

Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.

In pages: 5696-5701, IEEE, May 2013 (inproceedings)

Abstract
In this paper we address the problem of cooperative localization and target tracking with a team of moving robots. We model the problem as a least squares minimization problem and show that this problem can be efficiently solved using sparse optimization methods. To achieve this, we represent the problem as a graph, where the nodes are robot and target poses at individual time-steps and the edges are their relative measurements. Static landmarks at known position are used to define a common reference frame for the robots and the targets. In this way, we mitigate the risk of using measurements and state estimates more than once, since all the relative measurements are i.i.d. and no marginalization is performed. Experiments performed using a set of real robots show higher accuracy compared to a Kalman filter.

DOI [BibTex]

DOI [BibTex]


no image
Unknown-color spherical object detection and tracking

Troppan, A., Guerreiro, E., Celiberti, F., Santos, G., Ahmad, A., Lima, P.

In pages: 1-4, IEEE, April 2013 (inproceedings)

Abstract
Detection and tracking of an unknown-color spherical object in a partially-known environment using a robot with a single camera is the core problem addressed in this article. A novel color detection mechanism, which exploits the geometrical properties of the spherical object's projection onto the image plane, precedes the object's detection process. A Kalman filter-based tracker uses the object detection in its update step and tracks the spherical object. Real robot experimental evaluation of the proposed method is presented on soccer robots detecting and tracking an unknown-color ball.

DOI [BibTex]

DOI [BibTex]


Thumb xl visapp
Simple, fast, accurate melanocytic lesion segmentation in 1D colour space

Peruch, F., Bogo, F., Bonazza, M., Bressan, M., Cappelleri, V., Peserico, E.

In VISAPP (1), pages: 191-200, Barcelona, February 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl thumbiccvsilvia
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

pdf code data DOI Project Page Project Page Project Page [BibTex]

pdf code data DOI Project Page Project Page Project Page [BibTex]


no image
Right Ventricle Segmentation by Temporal Information Constrained Gradient Vector Flow

X. Yang, S. Y. Yeo, Y. Su, C. Lim, M. Wan, L. Zhong, R. S. Tan

In IEEE International Conference on Systems, Man, and Cybernetics, 2013 (inproceedings)

Abstract
Evaluation of right ventricular (RV) structure and function is of importance in the management of most cardiac disorders. But the segmentation of RV has always been consid- ered challenging due to low contrast of the myocardium with surrounding and high shape variability of the RV. In this paper, we present a 2D + T active contour model for segmentation and tracking of RV endocardium on cardiac magnetic resonance (MR) images. To take into account the temporal information between adjacent frames, we propose to integrate the time-dependent constraints into the energy functional of the classical gradient vector flow (GVF). As a result, the prior motion knowledge of RV is introduced in the deformation process through the time-dependent constraints in the proposed GVF-T model. A weighting parameter is introduced to adjust the weight of the temporal information against the image data itself. The additional external edge forces retrieved from the temporal constraints may be useful for the RV segmentation, such that lead to a better segmentation performance. The effectiveness of the proposed approach is supported by experimental results on synthetic and cardiac MR images.

[BibTex]

[BibTex]


Thumb xl gcpr thumbnail 200 112
A Comparison of Directional Distances for Hand Pose Estimation

Tzionas, D., Gall, J.

In German Conference on Pattern Recognition (GCPR), 8142, pages: 131-141, Lecture Notes in Computer Science, (Editors: Weickert, Joachim and Hein, Matthias and Schiele, Bernt), Springer, 2013 (inproceedings)

Abstract
Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]


Thumb xl iccv13
Dynamic Probabilistic Volumetric Models

Ulusoy, A. O., Biris, O., Mundy, J. L.

In ICCV, pages: 505-512, 2013 (inproceedings)

Abstract
This paper presents a probabilistic volumetric framework for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compression of 4-d data and provide efficient spatio-temporal processing. The advances of the proposed framework is demonstrated on standard datasets using free-viewpoint video and 3-d tracking applications.

video pdf DOI [BibTex]

video pdf DOI [BibTex]


Thumb xl apcom1
Model Reconstruction of Patient-Specific Cardiac Mesh from Segmented Contour Lines

C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. S. Tan, K. K. Poh, P. Chai,

In Asia Pacific Congress on Computational Mechanics, 2013 (inproceedings)

Abstract
We propose an automatic algorithm for the reconstruction of a set of patient-specific dynamic cardiac mesh model with 1-to-1 mesh correspondence over the whole cardiac cycle. This work focus on both the reconstruction technique of the initial 3D model of the heart and also the consistent mapping of the vertex positions throughout all the 3D meshes. This process is technically more challenging due to the wide interval spacing between MRI images as compared to CT images, making overlapping blood vessels much harder to discern. We propose a tree-based connectivity data structure to perform a filtering process to eliminate weak connections between contours on adjacent slices. The reconstructed 3D model from the first time step is used as a base template model, and deformed to fit the segmented contours in the next time step. Our algorithm has been tested on an actual acquisition of cardiac MRI images over one cardiac cycle.

[BibTex]

[BibTex]


Thumb xl pic cdc iccv13
A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach

Zeng, Y., Wang, C., Gu, X., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), pages: 3360~3367, 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ncmrf cvpr2013
Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimensions of Higher-Order Cliques

Zeng, Y., Wang, C., Soatto, S., Yau, S.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl embs1
Reconstructing patient-specific cardiac models from contours via Delaunay triangulation and graph-cuts

Min Wan, Calvin Lim, Junmei Zhang, Yi Su, Si Yong Yeo, Desheng Wang, Ru San Tan, Liang Zhong

In International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 2976-9, 2013 (inproceedings)

[BibTex]

[BibTex]


Thumb xl cinc1
Regional comparison of left ventricle systolic wall stress reveals intraregional uniformity in healthy subjects

Soo Kng Teo, Si Yong Yeo, May Ling Tan, Chi Wan Lim, Liang Zhong, Ru San Tan, Yi Su

In Computing in Cardiology Conference, pages: 575 - 578, 2013 (inproceedings)

Abstract
This study aimed to assess the feasibility of using the regional uniformity of the left ventricle (LV) wall stress (WS) to diagnose patients with myocardial infarction. We present a novel method using a similarity map that measures the degree of uniformity in nominal systolic WS across pairs of segments within the same patient. The values of the nominal WS are computed at each vertex point from a 1-to-1 corresponding mesh pair of the LV at the end-diastole (ED) and end-systole (ES) phases. The 3D geometries of the LV at ED and ES are reconstructed from border-delineated MRI images and the 1-to-1 mesh generated using a strain-energy minimization approach. The LV is then partitioned into 16 segments based on published clinical standard and the nominal WS histogram distribution for each of the segment was computed. A similarity index is then computed for each pair of histogram distributions to generate a 16-by-16 similarity map. Based on our initial study involving 12 MI patients and 9 controls, we observed uniformity for intra- regional comparisons in the controls compared against the patients. Our results suggest that the regional uniformity of the nominal systolic WS in the form of a similarity map can potentially be used as a discriminant between MI patients and normal controls.

[BibTex]

[BibTex]

2011


Thumb xl teaser iccv2011
Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H., Rosenhahn, B.

In IEEE International Conference on Computer Vision (ICCV), pages: 1243-1250, November 2011 (inproceedings)

project page pdf supplemental [BibTex]

2011

project page pdf supplemental [BibTex]


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl iccv2012
Means in spaces of tree-like shapes

Aasa Feragen, Soren Hauberg, Mads Nielsen, Francois Lauze

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 736 -746, IEEE, november 2011 (inproceedings)

Publishers site PDF Suppl. material [BibTex]

Publishers site PDF Suppl. material [BibTex]


Thumb xl teaser iccvw
Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker

Leal-Taixé, L., Rosenhahn, G. P. A. B.

In IEEE International Conference on Computer Vision Workshops (IICCVW), November 2011 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]