Header logo is ps


2011


no image
Adaptation for perception of the human body: Investigations of transfer across viewpoint and pose

Sekunova, A., Black, M. J., Parkinson, L., Barton, J. S.

Vision Sciences Society, 2011 (conference)

[BibTex]

2011

[BibTex]


Thumb xl icip1
Level Set Segmentation with Robust Image Gradient Energy and Statistical Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In IEEE International Conference on Image Processing, pages: 3397 - 3400, 2011 (inproceedings)

Abstract
We propose a new level set segmentation method with statistical shape prior using a variational approach. The image energy is derived from a robust image gradient feature. This gives the active contour a global representation of the geometric configuration, making it more robust to image noise, weak edges and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the model to handle relatively large shape variations. Comparative examples using both synthetic and real images show the robustness and efficiency of the proposed method.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl cmbve1
Variational Level Set Segmentation Using Shape Prior

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Mathematical and Computational Biomedical Engineering, 2011 (inproceedings)

[BibTex]

[BibTex]


Thumb xl hmdb snapshot1
HMDB: A Large Video Database for Human Motion Recognition

Kuhne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

code, webpage, dataset pdf [BibTex]

code, webpage, dataset pdf [BibTex]


no image
Context dependent changes in grip selectivity in primate ventral premotor cortex

Franquemont, L., Vargas-Irwin, C., Black, M., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Online, Society for Neuroscience, 2011, Online (conference)

[BibTex]

[BibTex]


no image
Towards a freely moving animal model: Combining markerless multi-camera video capture and wirelessly transmitted neural recording for the analysis of walking

Foster, J., Freifeld, O., Nuyujukian, P., Ryu, S., Black, M., Shenoy, K.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl dagm2011imagesmall
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

pdf talk Project Page [BibTex]

pdf talk Project Page [BibTex]


no image
Visual orientation and direction selectivity through thalamic synchrony

Kelly, S., Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

[BibTex]

[BibTex]


no image
Use of the BrainGate neural inteface system for more than five years by a woman with tetraplegia

Hochberg, L., Bacher, D., Barefoot, L., Berhanu, E., Black, M., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Berge, J., Rosler, D., Schmansky, N., Simeral, J., Travers, B., Truccolo, W., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Onine (conference)

[BibTex]

[BibTex]


no image
Extracting 3D Structures from Biomedical Data

Xianghua Xie, Si Yong Yeo, Igor Sazonov, Perumal Nithiarasu

Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, 2011 (conference)

[BibTex]

[BibTex]


Thumb xl illumination cvpr11
Illumination Estimation and Cast Shadow Detection through a Higher-order Graphical Model

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl femursegmentation miccai11
Pose-invariant 3D Proximal Femur Estimation through Bi-Planar Image Segmentation with Hierarchical Higher-Order Graph-based Priors

Wang, C., Boussaid, H., Simon, L., Lazennec, J., Paragios, N.

In International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl sufacetracking cvpr11
Intrinsic Dense 3D Surface Tracking

Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl emmcvpr2012
Data-Driven Importance Distributions for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 6819, pages: 287-299, Lecture Notes in Computer Science, (Editors: Boykov, Yuri and Kahl, Fredrik and Lempitsky, Victor and Schmidt, Frank), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site Code PDF Suppl. material [BibTex]

Publishers site Code PDF Suppl. material [BibTex]


Thumb xl kdcv2011 teaser
A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model

Soren Hauberg, Kim Steenstrup Pedersen

In 1st IEEE Workshop on Kernels and Distances for Computer Vision (ICCV workshop), 2011 (inproceedings)

Workshop link [BibTex]

Workshop link [BibTex]


Thumb xl thumb system1
Virtual Visual Servoing for Real-Time Robot Pose Estimation

Gratal, X., Romero, J., Kragic, D.

In International Federation of Automatic Control World Congress, IFAC, 2011 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Cooperative Localization Based on Visually Shared Objects

Lima, P., Santos, P., Oliveira, R., Ahmad, A., Santos, J.

In RoboCup 2010: Robot Soccer World Cup XIV, pages: 350-361, Lecture Notes in Computer Science ; 6556, Springer, Berlin, Germany, 2011 (inproceedings)

Abstract
In this paper we describe a cooperative localization algorithm based on a modification of the Monte Carlo Localization algorithm where, when a robot detects it is lost, particles are spread not uniformly in the state space, but rather according to the information on the location of an object whose distance and bearing is measured by the lost robot. The object location is provided by other robots of the same team using explicit (wireless) communication. Results of application of the method to a team of real robots are presented.

DOI [BibTex]

DOI [BibTex]


Thumb xl sufacematching ssvm11
Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

Wang, C., Bronstein, M. M., Bronstein, A. M., Paragios, N.

In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl viewpointinvariantmodel iccv11.
Viewpoint Invariant 3D Landmark Model Inference from Monocular 2D Images Using Higher-Order Priors

Wang, C., Zeng, Y., Simon, L., Kakadiaris, I., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Correspondence estimation from non-rigid motion information

Wulff, J., Lotz, T., Stehle, T., Aach, T., Chase, J. G.

In Proc. SPIE, Proc. SPIE, (Editors: B. M. Dawant, D. R. Haynor), SPIE, 2011 (inproceedings)

Abstract
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl icann2011
An Empirical Study on the Performance of Spectral Manifold Learning Techniques

Peter Mysling, Soren Hauberg, Kim S. Pedersen

In Artificial Neural Networks and Machine Learning – ICANN 2011, 6791, pages: 347-354, Lecture Notes in Computer Science, (Editors: Honkela, Timo and Duch, Włodzisław and Girolami, Mark and Kaski, Samuel), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Separation of visual object features and grasp strategy in primate ventral premotor cortex

Vargas-Irwin, C., Franquemont, L., Black, M., Donoghue, J.

Neural Control of Movement, 21st Annual Conference, 2011 (conference)

[BibTex]

[BibTex]

2005


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

2005

pdf [BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2005
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl iccv05roth
On the spatial statistics of optical flow

(Marr Prize, Honorable Mention)

Roth, S., Black, M. J.

In International Conf. on Computer Vision, International Conf. on Computer Vision, pages: 42-49, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl nips05
Modeling neural population spiking activity with Gibbs distributions

Wood, F., Roth, S., Black, M. J.

In Advances in Neural Information Processing Systems 18, pages: 1537-1544, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

abstract [BibTex]

abstract [BibTex]

2004


no image
Automatic spike sorting for neural decoding

Wood, F. D., Fellows, M., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4009-4012, September 2004 (inproceedings)

pdf [BibTex]

2004

pdf [BibTex]


Thumb xl wuembs2004
Closed-loop neural control of cursor motion using a Kalman filter

Wu, W., Shaikhouni, A., Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 4126-4129, September 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ivr04
The dense estimation of motion and appearance in layers

Yalcin, H., Black, M. J., Fablet, R.

In IEEE Workshop on Image and Video Registration, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl sidworkshop04
3D human limb detection using space carving and multi-view eigen models

Bhatia, S., Sigal, L., Isard, M., Black, M. J.

In IEEE Workshop on Articulated and Nonrigid Motion, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2004sigal
Tracking loose-limbed people

Sigal, L., Bhatia, S., Roth, S., Black, M. J., Isard, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 421-428, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2004roth
Gibbs likelihoods for Bayesian tracking

Roth, S., Sigal, L., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 1, pages: 886-893, June 2004 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
A direct brain-machine interface for 2D cursor control using a Kalman filter

Shaikhouni, A., Wu, W., Moris, D. S., Donoghue, J. P., Black, M. J.

Society for Neuroscience, 2004, Online (conference)

abstract [BibTex]

abstract [BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 09.54.19
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 09.50.58
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.06.33
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Thumb xl eccv2002hvg
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.29.56
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.03.10
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1992


Thumb xl arvo92
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.01.23
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]