Header logo is ps


2008


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

2008

[BibTex]


no image
Decoding of reach and grasp from MI population spiking activity using a low-dimensional model of hand and arm posture

Yadollahpour, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]


no image
Neural activity in the motor cortex of humans with tetraplegia

Donoghue, J., Simeral, J., Black, M., Kim, S., Truccolo, W., Hochberg, L.

AREADNE Research in Encoding And Decoding of Neural Ensembles, June, Santorini, Greece, 2008 (conference)

[BibTex]

[BibTex]


Thumb xl trajectory nips
Nonrigid Structure from Motion in Trajectory Space

Akhter, I., Sheikh, Y., Khan, S., Kanade, T.

In Neural Information Processing Systems, 1(2):41-48, 2008 (inproceedings)

Abstract
Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this approach is that we do not need to estimate any basis vectors during computation. We show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions. This results in a significant reduction in unknowns, and corresponding stability in estimation. We report empirical performance, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

pdf project page [BibTex]

pdf project page [BibTex]


Thumb xl sigalnips
Combined discriminative and generative articulated pose and non-rigid shape estimation

Sigal, L., Balan, A., Black, M. J.

In Advances in Neural Information Processing Systems 20, NIPS-2007, pages: 1337–1344, MIT Press, 2008 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Reconstructing reach and grasp actions using neural population activity from Primary Motor Cortex

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]

1996


Thumb xl bildschirmfoto 2013 01 14 um 10.40.24
Cardboard people: A parameterized model of articulated motion

Ju, S. X., Black, M. J., Yacoob, Y.

In 2nd Int. Conf. on Automatic Face- and Gesture-Recognition, pages: 38-44, Killington, Vermont, October 1996 (inproceedings)

Abstract
We extend the work of Black and Yacoob on the tracking and recognition of human facial expressions using parameterized models of optical flow to deal with the articulated motion of human limbs. We define a "cardboard person model" in which a person's limbs are represented by a set of connected planar patches. The parameterized image motion of these patches is constrained to enforce articulated motion and is solved for directly using a robust estimation technique. The recovered motion parameters provide a rich and concise description of the activity that can be used for recognition. We propose a method for performing view-based recognition of human activities from the optical flow parameters that extends previous methods to cope with the cyclical nature of human motion. We illustrate the method with examples of tracking human legs over long image sequences.

pdf [BibTex]

1996

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.48.32
Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency

(Nominated: Best paper)

Ju, S., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’96, pages: 307-314, San Francisco, CA, June 1996 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.52.58
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

In Proc. Fourth European Conf. on Computer Vision, ECCV’96, pages: 329-342, LNCS 1064, Springer Verlag, Cambridge, England, April 1996 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl miximages
Mixture Models for Image Representation

Jepson, A., Black, M.

PRECARN ARK Project Technical Report ARK96-PUB-54, March 1996 (techreport)

Abstract
We consider the estimation of local greylevel image structure in terms of a layered representation. This type of representation has recently been successfully used to segment various objects from clutter using either optical ow or stereo disparity information. We argue that the same type of representation is useful for greylevel data in that it allows for the estimation of properties for each of several different components without prior segmentation. Our emphasis in this paper is on the process used to extract such a layered representation from a given image In particular we consider a variant of the EM algorithm for the estimation of the layered model and consider a novel technique for choosing the number of layers to use. We briefly consider the use of a simple version of this approach for image segmentation and suggest two potential applications to the ARK project

pdf [BibTex]

pdf [BibTex]

1993


Thumb xl bildschirmfoto 2013 01 14 um 11.48.36
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

pdf abstract tech report [BibTex]

1993

pdf abstract tech report [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.52.45
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Thumb xl ijcai
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1990


Thumb xl bildschirmfoto 2013 01 14 um 12.09.14
A model for the detection of motion over time

Black, M. J., Anandan, P.

In Proc. Int. Conf. on Computer Vision, ICCV-90, pages: 33-37, Osaka, Japan, December 1990 (inproceedings)

Abstract
We propose a model for the recovery of visual motion fields from image sequences. Our model exploits three constraints on the motion of a patch in the environment: i) Data Conservation: the intensity structure corresponding to an environmental surface patch changes gradually over time; ii) Spatial Coherence: since surfaces have spatial extent neighboring points have similar motions; iii) Temporal Coherence: the direction and velocity of motion for a surface patch changes gradually. The formulation of the constraints takes into account the possibility of multiple motions at a particular location. We also present a highly parallel computational model for realizing these constraints in which computation occurs locally, knowledge about the motion increases over time, and occlusion and disocclusion boundaries are estimated. An implementation of the model using a stochastic temporal updating scheme is described. Experiments with both synthetic and real imagery are presented.

pdf [BibTex]

1990

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.14.18
Constraints for the early detection of discontinuity from motion

Black, M. J., Anandan, P.

In Proc. National Conf. on Artificial Intelligence, AAAI-90, pages: 1060-1066, Boston, MA, 1990 (inproceedings)

Abstract
Surface discontinuities are detected in a sequence of images by exploiting physical constraints at early stages in the processing of visual motion. To achieve accurate early discontinuity detection we exploit five physical constraints on the presence of discontinuities: i) the shape of the sum of squared differences (SSD) error surface in the presence of surface discontinuities; ii) the change in the shape of the SSD surface due to relative surface motion; iii) distribution of optic flow in a neighborhood of a discontinuity; iv) spatial consistency of discontinuities; V) temporal consistency of discontinuities. The constraints are described, and experimental results on sequences of real and synthetic images are presented. The work has applications in the recovery of environmental structure from motion and in the generation of dense optic flow fields.

pdf [BibTex]

pdf [BibTex]