Header logo is ps


2006


Thumb xl iwcm
Tracking complex objects using graphical object models

Sigal, L., Zhu, Y., Comaniciu, D., Black, M. J.

In International Workshop on Complex Motion, LNCS 3417, pages: 223-234, Springer-Verlag, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

2006

pdf pdf from publisher [BibTex]


Thumb xl evatr
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

pdf abstract [BibTex]

pdf abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 16 um 10.16.16
Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking (extended abstract)

Sigal, L., Black, M. J.

In Learning, Representation and Context for Human Sensing in Video Workshop (in conjunction with CVPR), 2006 (inproceedings)

pdf poster [BibTex]

pdf poster [BibTex]


Thumb xl springs2
Nonlinear physically-based models for decoding motor-cortical population activity

Shakhnarovich, G., Kim, S., Black, M. J.

In Advances in Neural Information Processing Systems 19, NIPS-2006, pages: 1257-1264, MIT Press, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
A comparison of decoding models for imagined motion from human motor cortex

Kim, S., Simeral, J., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.11. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]


Thumb xl film
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

In Int. Conf. on Image Processing, ICIP, pages: 2641-2644, Atlanta, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bp
Efficient belief propagation with learned higher-order Markov random fields

Lan, X., Roth, S., Huttenlocher, D., Black, M. J.

In European Conference on Computer Vision, ECCV, II, pages: 269-282, Graz, Austria, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
Modeling neural control of physically realistic movement

Shaknarovich, G., Kim, S., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.12. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 09.54.19
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 09.50.58
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.06.33
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Thumb xl eccv2002hvg
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.29.56
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.03.10
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1996


Thumb xl bildschirmfoto 2013 01 14 um 10.40.24
Cardboard people: A parameterized model of articulated motion

Ju, S. X., Black, M. J., Yacoob, Y.

In 2nd Int. Conf. on Automatic Face- and Gesture-Recognition, pages: 38-44, Killington, Vermont, October 1996 (inproceedings)

Abstract
We extend the work of Black and Yacoob on the tracking and recognition of human facial expressions using parameterized models of optical flow to deal with the articulated motion of human limbs. We define a "cardboard person model" in which a person's limbs are represented by a set of connected planar patches. The parameterized image motion of these patches is constrained to enforce articulated motion and is solved for directly using a robust estimation technique. The recovered motion parameters provide a rich and concise description of the activity that can be used for recognition. We propose a method for performing view-based recognition of human activities from the optical flow parameters that extends previous methods to cope with the cyclical nature of human motion. We illustrate the method with examples of tracking human legs over long image sequences.

pdf [BibTex]

1996

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.48.32
Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency

(Nominated: Best paper)

Ju, S., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’96, pages: 307-314, San Francisco, CA, June 1996 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.52.58
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

In Proc. Fourth European Conf. on Computer Vision, ECCV’96, pages: 329-342, LNCS 1064, Springer Verlag, Cambridge, England, April 1996 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl miximages
Mixture Models for Image Representation

Jepson, A., Black, M.

PRECARN ARK Project Technical Report ARK96-PUB-54, March 1996 (techreport)

Abstract
We consider the estimation of local greylevel image structure in terms of a layered representation. This type of representation has recently been successfully used to segment various objects from clutter using either optical ow or stereo disparity information. We argue that the same type of representation is useful for greylevel data in that it allows for the estimation of properties for each of several different components without prior segmentation. Our emphasis in this paper is on the process used to extract such a layered representation from a given image In particular we consider a variant of the EM algorithm for the estimation of the layered model and consider a novel technique for choosing the number of layers to use. We briefly consider the use of a simple version of this approach for image segmentation and suggest two potential applications to the ARK project

pdf [BibTex]

pdf [BibTex]

1993


Thumb xl bildschirmfoto 2013 01 14 um 11.48.36
Mixture models for optical flow computation

Jepson, A., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR-93, pages: 760-761, New York, NY, June 1993 (inproceedings)

pdf abstract tech report [BibTex]

1993

pdf abstract tech report [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 11.52.45
A framework for the robust estimation of optical flow

(Helmholtz Prize)

Black, M. J., Anandan, P.

In Fourth International Conf. on Computer Vision, ICCV-93, pages: 231-236, Berlin, Germany, May 1993 (inproceedings)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This work describes a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This work focuses on the recovery of multiple parametric motion models within a region as well as the recovery of piecewise-smooth flow fields and provides examples with natural and synthetic image sequences.

pdf video abstract code [BibTex]

pdf video abstract code [BibTex]


Thumb xl ijcai
Action, representation, and purpose: Re-evaluating the foundations of computational vision

Black, M. J., Aloimonos, Y., Brown, C. M., Horswill, I., Malik, J., G. Sandini, , Tarr, M. J.

In International Joint Conference on Artificial Intelligence, IJCAI-93, pages: 1661-1666, Chambery, France, 1993 (inproceedings)

pdf [BibTex]

pdf [BibTex]