Header logo is ps


2013


Thumb xl embs1
Reconstructing patient-specific cardiac models from contours via Delaunay triangulation and graph-cuts

Min Wan, Calvin Lim, Junmei Zhang, Yi Su, Si Yong Yeo, Desheng Wang, Ru San Tan, Liang Zhong

In International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 2976-9, 2013 (inproceedings)

[BibTex]

2013

[BibTex]


Thumb xl cinc1
Regional comparison of left ventricle systolic wall stress reveals intraregional uniformity in healthy subjects

Soo Kng Teo, Si Yong Yeo, May Ling Tan, Chi Wan Lim, Liang Zhong, Ru San Tan, Yi Su

In Computing in Cardiology Conference, pages: 575 - 578, 2013 (inproceedings)

Abstract
This study aimed to assess the feasibility of using the regional uniformity of the left ventricle (LV) wall stress (WS) to diagnose patients with myocardial infarction. We present a novel method using a similarity map that measures the degree of uniformity in nominal systolic WS across pairs of segments within the same patient. The values of the nominal WS are computed at each vertex point from a 1-to-1 corresponding mesh pair of the LV at the end-diastole (ED) and end-systole (ES) phases. The 3D geometries of the LV at ED and ES are reconstructed from border-delineated MRI images and the 1-to-1 mesh generated using a strain-energy minimization approach. The LV is then partitioned into 16 segments based on published clinical standard and the nominal WS histogram distribution for each of the segment was computed. A similarity index is then computed for each pair of histogram distributions to generate a 16-by-16 similarity map. Based on our initial study involving 12 MI patients and 9 controls, we observed uniformity for intra- regional comparisons in the controls compared against the patients. Our results suggest that the regional uniformity of the nominal systolic WS in the form of a similarity map can potentially be used as a discriminant between MI patients and normal controls.

[BibTex]

[BibTex]


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

code Project Page [BibTex]

code Project Page [BibTex]


Thumb xl dfmdv1
Image Gradient Based Level Set Methods in 2D and 3D

Xianhua Xie, Si Yong Yeo, Majid Mirmehdi, Igor Sazonov, Perumal Nithiarasu

In Deformation Models: Tracking, Animation and Applications, pages: 101-120, 0, (Editors: Manuel González Hidalgo and Arnau Mir Torres and Javier Varona Gómez), Springer, 2013 (inbook)

Abstract
This chapter presents an image gradient based approach to perform 2D and 3D deformable model segmentation using level set. The 2D method uses an external force field that is based on magnetostatics and hypothesized magnetic interactions between the active contour and object boundaries. The major contribution of the method is that the interaction of its forces can greatly improve the active contour in capturing complex geometries and dealing with difficult initializations, weak edges and broken boundaries. This method is then generalized to 3D by reformulating its external force based on geometrical interactions between the relative geometries of the deformable model and the object boundary characterized by image gradient. The evolution of the deformable model is solved using the level set method so that topological changes are handled automatically. The relative geometrical configurations between the deformable model and the object boundaries contribute to a dynamic vector force field that changes accordingly as the deformable model evolves. The geometrically induced dynamic interaction force has been shown to greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and it gives the deformable model a high invariancy in initialization configurations. The voxel interactions across the whole image domain provide a global view of the object boundary representation, giving the external force a long attraction range. The bidirectionality of the external force field allows the new deformable model to deal with arbitrary cross-boundary initializations, and facilitates the handling of weak edges and broken boundaries.

[BibTex]

[BibTex]


Thumb xl 2013 ivc rkek teaser
Non-parametric hand pose estimation with object context

Romero, J., Kjellström, H., Ek, C. H., Kragic, D.

Image and Vision Computing , 31(8):555 - 564, 2013 (article)

Abstract
In the spirit of recent work on contextual recognition and estimation, we present a method for estimating the pose of human hands, employing information about the shape of the object in the hand. Despite the fact that most applications of human hand tracking involve grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the surrounding environment. Occlusion of the hand from grasped objects does in fact often pose a severe challenge to the estimation of hand pose. In the presented method, object occlusion is not only compensated for, it contributes to the pose estimation in a contextual fashion; this without an explicit model of object shape. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large database (.. entries) of hand poses with and without grasped objects. The system that operates in real time, is robust to self occlusions, object occlusions and segmentation errors, and provides full hand pose reconstruction from monocular video. Temporal consistency in hand pose is taken into account, without explicitly tracking the hand in the high-dim pose space. Experiments show the non-parametric method to outperform other state of the art regression methods, while operating at a significantly lower computational cost than comparable model-based hand tracking methods.

Publisher site pdf link (url) [BibTex]

Publisher site pdf link (url) [BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 09.54.19
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black, M. J., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J. P.

In SAB’02-Workshop on Motor Control in Humans and Robots: On the Interplay of Real Brains and Artificial Devices, pages: 66-73, Edinburgh, Scotland (UK), August 2002 (inproceedings)

pdf [BibTex]

2002

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.33.56
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

pdf [BibTex]


no image
Inferring hand motion from multi-cell recordings in motor cortex using a Kalman filter

Wu, W., Black M., Gao, Y., Bienenstock, E., Serruya, M., Donoghue, J.

Program No. 357.5. 2002 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2002, Online (conference)

abstract [BibTex]

abstract [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 09.50.58
Automatic detection and tracking of human motion with a view-based representation

Fablet, R., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 476-491, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
This paper proposes a solution for the automatic detection and tracking of human motion in image sequences. Due to the complexity of the human body and its motion, automatic detection of 3D human motion remains an open, and important, problem. Existing approaches for automatic detection and tracking focus on 2D cues and typically exploit object appearance (color distribution, shape) or knowledge of a static background. In contrast, we exploit 2D optical flow information which provides rich descriptive cues, while being independent of object and background appearance. To represent the optical flow patterns of people from arbitrary viewpoints, we develop a novel representation of human motion using low-dimensional spatio-temporal models that are learned using motion capture data of human subjects. In addition to human motion (the foreground) we probabilistically model the motion of generic scenes (the background); these statistical models are defined as Gibbsian fields specified from the first-order derivatives of motion observations. Detection and tracking are posed in a principled Bayesian framework which involves the computation of a posterior probability distribution over the model parameters (i.e., the location and the type of the human motion) given a sequence of optical flow observations. Particle filtering is used to represent and predict this non-Gaussian posterior distribution over time. The model parameters of samples from this distribution are related to the pose parameters of a 3D articulated model (e.g. the approximate joint angles and movement direction). Thus the approach proves suitable for initializing more complex probabilistic models of human motion. As shown by experiments on real image sequences, our method is able to detect and track people under different viewpoints with complex backgrounds.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.06.33
A layered motion representation with occlusion and compact spatial support

Fleet, D. J., Jepson, A., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 1, pages: 692-706, LNCS 2353, (Editors: A. Heyden and G. Sparr and M. Nielsen and P. Johansen), Springer-Verlag , 2002 (inproceedings)

Abstract
We describe a 2.5D layered representation for visual motion analysis. The representation provides a global interpretation of image motion in terms of several spatially localized foreground regions along with a background region. Each of these regions comprises a parametric shape model and a parametric motion model. The representation also contains depth ordering so visibility and occlusion are rightly included in the estimation of the model parameters. Finally, because the number of objects, their positions, shapes and sizes, and their relative depths are all unknown, initial models are drawn from a proposal distribution, and then compared using a penalized likelihood criterion. This allows us to automatically initialize new models, and to compare different depth orderings.

pdf [BibTex]

pdf [BibTex]


Thumb xl eccv2002hvg
Implicit probabilistic models of human motion for synthesis and tracking

Sidenbladh, H., Black, M. J., Sigal, L.

In European Conf. on Computer Vision, 1, pages: 784-800, 2002 (inproceedings)

Abstract
This paper addresses the problem of probabilistically modeling 3D human motion for synthesis and tracking. Given the high dimensional nature of human motion, learning an explicit probabilistic model from available training data is currently impractical. Instead we exploit methods from texture synthesis that treat images as representing an implicit empirical distribution. These methods replace the problem of representing the probability of a texture pattern with that of searching the training data for similar instances of that pattern. We extend this idea to temporal data representing 3D human motion with a large database of example motions. To make the method useful in practice, we must address the problem of efficient search in a large training set; efficiency is particularly important for tracking. Towards that end, we learn a low dimensional linear model of human motion that is used to structure the example motion database into a binary tree. An approximate probabilistic tree search method exploits the coefficients of this low-dimensional representation and runs in sub-linear time. This probabilistic tree search returns a particular sample human motion with probability approximating the true distribution of human motions in the database. This sampling method is suitable for use with particle filtering techniques and is applied to articulated 3D tracking of humans within a Bayesian framework. Successful tracking results are presented, along with examples of synthesizing human motion using the model.

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 11 um 10.29.56
Robust parameterized component analysis: Theory and applications to 2D facial modeling

De la Torre, F., Black, M. J.

In European Conf. on Computer Vision, ECCV 2002, 4, pages: 653-669, LNCS 2353, Springer-Verlag, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 15 um 10.03.10
Probabilistic inference of hand motion from neural activity in motor cortex

Gao, Y., Black, M. J., Bienenstock, E., Shoham, S., Donoghue, J.

In Advances in Neural Information Processing Systems 14, pages: 221-228, MIT Press, 2002 (inproceedings)

pdf [BibTex]

pdf [BibTex]

1992


Thumb xl arvo92
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.01.23
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]


Thumb xl thesis
Robust Incremental Optical Flow

Black, M. J.

Yale University, Department of Computer Science, New Haven, CT, 1992, Research Report YALEU-DCS-RR-923 (phdthesis)

pdf code [BibTex]

pdf code [BibTex]

1991


Thumb xl ijcai91
Dynamic motion estimation and feature extraction over long image sequences

Black, M. J., Anandan, P.

In Proc. IJCAI Workshop on Dynamic Scene Understanding, Sydney, Australia, August 1991 (inproceedings)

[BibTex]

1991

[BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.06.42
Robust dynamic motion estimation over time

(IEEE Computer Society Outstanding Paper Award)

Black, M. J., Anandan, P.

In Proc. Computer Vision and Pattern Recognition, CVPR-91,, pages: 296-302, Maui, Hawaii, June 1991 (inproceedings)

Abstract
This paper presents a novel approach to incrementally estimating visual motion over a sequence of images. We start by formulating constraints on image motion to account for the possibility of multiple motions. This is achieved by exploiting the notions of weak continuity and robust statistics in the formulation of the minimization problem. The resulting objective function is non-convex. Traditional stochastic relaxation techniques for minimizing such functions prove inappropriate for the task. We present a highly parallel incremental stochastic minimization algorithm which has a number of advantages over previous approaches. The incremental nature of the scheme makes it truly dynamic and permits the detection of occlusion and disocclusion boundaries.

pdf video abstract [BibTex]

pdf video abstract [BibTex]