Header logo is ps


2017


Thumb xl slide1
3D Menagerie: Modeling the 3D Shape and Pose of Animals

Zuffi, S., Kanazawa, A., Jacobs, D., Black, M. J.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, pages: 5524-5532, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
There has been significant work on learning realistic, articulated, 3D models of the human body. In contrast, there are few such models of animals, despite many applications. The main challenge is that animals are much less cooperative than humans. The best human body models are learned from thousands of 3D scans of people in specific poses, which is infeasible with live animals. Consequently, we learn our model from a small set of 3D scans of toy figurines in arbitrary poses. We employ a novel part-based shape model to compute an initial registration to the scans. We then normalize their pose, learn a statistical shape model, and refine the registrations and the model together. In this way, we accurately align animal scans from different quadruped families with very different shapes and poses. With the registration to a common template we learn a shape space representing animals including lions, cats, dogs, horses, cows and hippos. Animal shapes can be sampled from the model, posed, animated, and fit to data. We demonstrate generalization by fitting it to images of real animals including species not seen in training.

pdf video Project Page [BibTex]

2017

pdf video Project Page [BibTex]


Thumb xl pyramid
Optical Flow Estimation using a Spatial Pyramid Network

Ranjan, A., Black, M.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
We learn to compute optical flow by combining a classical spatial-pyramid formulation with deep learning. This estimates large motions in a coarse-to-fine approach by warping one image of a pair at each pyramid level by the current flow estimate and computing an update to the flow. Instead of the standard minimization of an objective function at each pyramid level, we train one deep network per level to compute the flow update. Unlike the recent FlowNet approach, the networks do not need to deal with large motions; these are dealt with by the pyramid. This has several advantages. First, our Spatial Pyramid Network (SPyNet) is much simpler and 96% smaller than FlowNet in terms of model parameters. This makes it more efficient and appropriate for embedded applications. Second, since the flow at each pyramid level is small (< 1 pixel), a convolutional approach applied to pairs of warped images is appropriate. Third, unlike FlowNet, the learned convolution filters appear similar to classical spatio-temporal filters, giving insight into the method and how to improve it. Our results are more accurate than FlowNet on most standard benchmarks, suggesting a new direction of combining classical flow methods with deep learning.

pdf SupMat project/code [BibTex]

pdf SupMat project/code [BibTex]


Thumb xl imgidx 00197
Multiple People Tracking by Lifted Multicut and Person Re-identification

Tang, S., Andriluka, M., Andres, B., Schiele, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 3701-3710, IEEE Computer Society, Washington, DC, USA, July 2017 (inproceedings)

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl vpn teaser
Video Propagation Networks

Jampani, V., Gadde, R., Gehler, P. V.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

pdf supplementary arXiv project page code Project Page [BibTex]

pdf supplementary arXiv project page code Project Page [BibTex]


Thumb xl anja
Generating Descriptions with Grounded and Co-Referenced People

Rohrbach, A., Rohrbach, M., Tang, S., Oh, S. J., Schiele, B.

In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages: 4196-4206, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

PDF DOI Project Page [BibTex]

PDF DOI Project Page [BibTex]


Thumb xl cvpr2017 landpsace
Semantic Multi-view Stereo: Jointly Estimating Objects and Voxels

Ulusoy, A. O., Black, M. J., Geiger, A.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Dense 3D reconstruction from RGB images is a highly ill-posed problem due to occlusions, textureless or reflective surfaces, as well as other challenges. We propose object-level shape priors to address these ambiguities. Towards this goal, we formulate a probabilistic model that integrates multi-view image evidence with 3D shape information from multiple objects. Inference in this model yields a dense 3D reconstruction of the scene as well as the existence and precise 3D pose of the objects in it. Our approach is able to recover fine details not captured in the input shapes while defaulting to the input models in occluded regions where image evidence is weak. Due to its probabilistic nature, the approach is able to cope with the approximate geometry of the 3D models as well as input shapes that are not present in the scene. We evaluate the approach quantitatively on several challenging indoor and outdoor datasets.

YouTube pdf suppmat Project Page [BibTex]

YouTube pdf suppmat Project Page [BibTex]


Thumb xl judith
Deep representation learning for human motion prediction and classification

Bütepage, J., Black, M., Kragic, D., Kjellström, H.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
Generative models of 3D human motion are often restricted to a small number of activities and can therefore not generalize well to novel movements or applications. In this work we propose a deep learning framework for human motion capture data that learns a generic representation from a large corpus of motion capture data and generalizes well to new, unseen, motions. Using an encoding-decoding network that learns to predict future 3D poses from the most recent past, we extract a feature representation of human motion. Most work on deep learning for sequence prediction focuses on video and speech. Since skeletal data has a different structure, we present and evaluate different network architectures that make different assumptions about time dependencies and limb correlations. To quantify the learned features, we use the output of different layers for action classification and visualize the receptive fields of the network units. Our method outperforms the recent state of the art in skeletal motion prediction even though these use action specific training data. Our results show that deep feedforward networks, trained from a generic mocap database, can successfully be used for feature extraction from human motion data and that this representation can be used as a foundation for classification and prediction.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


Thumb xl teasercrop
Unite the People: Closing the Loop Between 3D and 2D Human Representations

Lassner, C., Romero, J., Kiefel, M., Bogo, F., Black, M. J., Gehler, P. V.

In Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2017, IEEE, Piscataway, NJ, USA, July 2017 (inproceedings)

Abstract
3D models provide a common ground for different representations of human bodies. In turn, robust 2D estimation has proven to be a powerful tool to obtain 3D fits “in-the-wild”. However, depending on the level of detail, it can be hard to impossible to acquire labeled data for training 2D estimators on large scale. We propose a hybrid approach to this problem: with an extended version of the recently introduced SMPLify method, we obtain high quality 3D body model fits for multiple human pose datasets. Human annotators solely sort good and bad fits. This procedure leads to an initial dataset, UP-3D, with rich annotations. With a comprehensive set of experiments, we show how this data can be used to train discriminative models that produce results with an unprecedented level of detail: our models predict 31 segments and 91 landmark locations on the body. Using the 91 landmark pose estimator, we present state-of-the art results for 3D human pose and shape estimation using an order of magnitude less training data and without assumptions about gender or pose in the fitting procedure. We show that UP-3D can be enhanced with these improved fits to grow in quantity and quality, which makes the system deployable on large scale. The data, code and models are available for research purposes.

arXiv project/code/data Project Page [BibTex]

arXiv project/code/data Project Page [BibTex]


Thumb xl mosh heroes icon
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

July 2017, U.S.~Patent 9,710,964 B2. (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

Google Patents MoSh Project [BibTex]


Thumb xl dapepatent
System and method for simulating realistic clothing

Black, M. J., Guan, P.

June 2017, U.S.~Patent 9,679,409 B2 (misc)

Abstract
Systems, methods, and computer-readable storage media for simulating realistic clothing. The system generates a clothing deformation model for a clothing type, wherein the clothing deformation model factors a change of clothing shape due to rigid limb rotation, pose-independent body shape, and pose-dependent deformations. Next, the system generates a custom-shaped garment for a given body by mapping, via the clothing deformation model, body shape parameters to clothing shape parameters. The system then automatically dresses the given body with the custom- shaped garment.

Google Patents pdf [BibTex]


Thumb xl image  1
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

Official Version [BibTex]


Thumb xl early stopping teaser
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

link (url) Project Page Project Page [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


Thumb xl web image
Data-Driven Physics for Human Soft Tissue Animation

Kim, M., Pons-Moll, G., Pujades, S., Bang, S., Kim, J., Black, M. J., Lee, S.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):54:1-54:12, 2017 (article)

Abstract
Data driven models of human poses and soft-tissue deformations can produce very realistic results, but they only model the visible surface of the human body and cannot create skin deformation due to interactions with the environment. Physical simulations can generalize to external forces, but their parameters are difficult to control. In this paper, we present a layered volumetric human body model learned from data. Our model is composed of a data-driven inner layer and a physics-based external layer. The inner layer is driven with a volumetric statistical body model (VSMPL). The soft tissue layer consists of a tetrahedral mesh that is driven using the finite element method (FEM). Model parameters, namely the segmentation of the body into layers and the soft tissue elasticity, are learned directly from 4D registrations of humans exhibiting soft tissue deformations. The learned two layer model is a realistic full-body avatar that generalizes to novel motions and external forces. Experiments show that the resulting avatars produce realistic results on held out sequences and react to external forces. Moreover, the model supports the retargeting of physical properties from one avatar when they share the same topology.

video paper link (url) Project Page [BibTex]

video paper link (url) Project Page [BibTex]


Thumb xl phd thesis teaser
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

pdf [BibTex]

pdf [BibTex]


Thumb xl web teaser eg
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

(Best Paper, Eurographics 2017)

Marcard, T. V., Rosenhahn, B., Black, M., Pons-Moll, G.

Computer Graphics Forum 36(2), Proceedings of the 38th Annual Conference of the European Association for Computer Graphics (Eurographics), pages: 349-360 , 2017 (article)

Abstract
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Thumb xl pami 2017 teaser
Efficient 2D and 3D Facade Segmentation using Auto-Context

Gadde, R., Jampani, V., Marlet, R., Gehler, P.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 (article)

Abstract
This paper introduces a fast and efficient segmentation technique for 2D images and 3D point clouds of building facades. Facades of buildings are highly structured and consequently most methods that have been proposed for this problem aim to make use of this strong prior information. Contrary to most prior work, we are describing a system that is almost domain independent and consists of standard segmentation methods. We train a sequence of boosted decision trees using auto-context features. This is learned using stacked generalization. We find that this technique performs better, or comparable with all previous published methods and present empirical results on all available 2D and 3D facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test-time inference.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


Thumb xl web image
ClothCap: Seamless 4D Clothing Capture and Retargeting

Pons-Moll, G., Pujades, S., Hu, S., Black, M.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):73:1-73:15, ACM, New York, NY, USA, 2017, Two first authors contributed equally (article)

Abstract
Designing and simulating realistic clothing is challenging and, while several methods have addressed the capture of clothing from 3D scans, previous methods have been limited to single garments and simple motions, lack detail, or require specialized texture patterns. Here we address the problem of capturing regular clothing on fully dressed people in motion. People typically wear multiple pieces of clothing at a time. To estimate the shape of such clothing, track it over time, and render it believably, each garment must be segmented from the others and the body. Our ClothCap approach uses a new multi-part 3D model of clothed bodies, automatically segments each piece of clothing, estimates the naked body shape and pose under the clothing, and tracks the 3D deformations of the clothing over time. We estimate the garments and their motion from 4D scans; that is, high-resolution 3D scans of the subject in motion at 60 fps. The model allows us to capture a clothed person in motion, extract their clothing, and retarget the clothing to new body shapes. ClothCap provides a step towards virtual try-on with a technology for capturing, modeling, and analyzing clothing in motion.

video project_page paper link (url) DOI Project Page Project Page [BibTex]

video project_page paper link (url) DOI Project Page Project Page [BibTex]


Thumb xl muvs
Towards Accurate Marker-less Human Shape and Pose Estimation over Time

Huang, Y., Bogo, F., Lassner, C., Kanazawa, A., Gehler, P. V., Romero, J., Akhter, I., Black, M. J.

In International Conference on 3D Vision (3DV), pages: 421-430, 2017 (inproceedings)

Abstract
Existing markerless motion capture methods often assume known backgrounds, static cameras, and sequence specific motion priors, limiting their application scenarios. Here we present a fully automatic method that, given multiview videos, estimates 3D human pose and body shape. We take the recently proposed SMPLify method [12] as the base method and extend it in several ways. First we fit a 3D human body model to 2D features detected in multi-view images. Second, we use a CNN method to segment the person in each image and fit the 3D body model to the contours, further improving accuracy. Third we utilize a generic and robust DCT temporal prior to handle the left and right side swapping issue sometimes introduced by the 2D pose estimator. Validation on standard benchmarks shows our results are comparable to the state of the art and also provide a realistic 3D shape avatar. We also demonstrate accurate results on HumanEva and on challenging monocular sequences of dancing from YouTube.

Code pdf DOI Project Page [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

[BibTex]

[BibTex]


Thumb xl coverhand wilson
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

Thesis link (url) Project Page [BibTex]

2013


Thumb xl iccv2013 siyu
Learning People Detectors for Tracking in Crowded Scenes

Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., Schiele, B.

In 2013 IEEE International Conference on Computer Vision, pages: 1049-1056, IEEE, December 2013 (inproceedings)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


Thumb xl thumb
Branch&Rank for Efficient Object Detection

Lehmann, A., Gehler, P., VanGool, L.

International Journal of Computer Vision, Springer, December 2013 (article)

Abstract
Ranking hypothesis sets is a powerful concept for efficient object detection. In this work, we propose a branch&rank scheme that detects objects with often less than 100 ranking operations. This efficiency enables the use of strong and also costly classifiers like non-linear SVMs with RBF-TeX kernels. We thereby relieve an inherent limitation of branch&bound methods as bounds are often not tight enough to be effective in practice. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for rather limited function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single formulation, phrased as a structured SVM problem. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We use the VOC’07 dataset to demonstrate the algorithmic properties of branch&rank.

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl thumb
Strong Appearance and Expressive Spatial Models for Human Pose Estimation

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In International Conference on Computer Vision (ICCV), pages: 3487 - 3494 , IEEE, December 2013 (inproceedings)

Abstract
Typical approaches to articulated pose estimation combine spatial modelling of the human body with appearance modelling of body parts. This paper aims to push the state-of-the-art in articulated pose estimation in two ways. First we explore various types of appearance representations aiming to substantially improve the body part hypotheses. And second, we draw on and combine several recently proposed powerful ideas such as more flexible spatial models as well as image-conditioned spatial models. In a series of experiments we draw several important conclusions: (1) we show that the proposed appearance representations are complementary; (2) we demonstrate that even a basic tree-structure spatial human body model achieves state-of-the-art performance when augmented with the proper appearance representation; and (3) we show that the combination of the best performing appearance model with a flexible image-conditioned spatial model achieves the best result, significantly improving over the state of the art, on the "Leeds Sports Poses'' and "Parse'' benchmarks.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 004304
Methods and Applications for Distance Based ANN Training

Lassner, C., Lienhart, R.

In IEEE International Conference on Machine Learning and Applications (ICMLA), December 2013 (inproceedings)

Abstract
Feature learning has the aim to take away the hassle of hand-designing features for machine learning tasks. Since the feature design process is tedious and requires a lot of experience, an automated solution is of great interest. However, an important problem in this field is that usually no objective values are available to fit a feature learning function to. Artificial Neural Networks are a sufficiently flexible tool for function approximation to be able to avoid this problem. We show how the error function of an ANN can be modified such that it works solely with objective distances instead of objective values. We derive the adjusted rules for backpropagation through networks with arbitrary depths and include practical considera- tions that must be taken into account to apply difference based learning successfully. On all three benchmark datasets we use, linear SVMs trained on automatically learned ANN features outperform RBF kernel SVMs trained on the raw data. This can be achieved in a feature space with up to only a tenth of dimensions of the number of original data dimensions. We conclude our work with two experiments on distance based ANN training in two further fields: data visualization and outlier detection.

pdf [BibTex]

pdf [BibTex]


Thumb xl tro
Extracting Postural Synergies for Robotic Grasping

Romero, J., Feix, T., Ek, C., Kjellstrom, H., Kragic, D.

Robotics, IEEE Transactions on, 29(6):1342-1352, December 2013 (article)

[BibTex]

[BibTex]


Thumb xl zhang
Understanding High-Level Semantics by Modeling Traffic Patterns

Zhang, H., Geiger, A., Urtasun, R.

In International Conference on Computer Vision, pages: 3056-3063, Sydney, Australia, December 2013 (inproceedings)

Abstract
In this paper, we are interested in understanding the semantics of outdoor scenes in the context of autonomous driving. Towards this goal, we propose a generative model of 3D urban scenes which is able to reason not only about the geometry and objects present in the scene, but also about the high-level semantics in the form of traffic patterns. We found that a small number of patterns is sufficient to model the vast majority of traffic scenes and show how these patterns can be learned. As evidenced by our experiments, this high-level reasoning significantly improves the overall scene estimation as well as the vehicle-to-lane association when compared to state-of-the-art approaches. All data and code will be made available upon publication.

pdf [BibTex]

pdf [BibTex]


Thumb xl thumb
A Non-parametric Bayesian Network Prior of Human Pose

Lehrmann, A. M., Gehler, P., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision (ICCV), pages: 1281-1288, December 2013 (inproceedings)

Abstract
Having a sensible prior of human pose is a vital ingredient for many computer vision applications, including tracking and pose estimation. While the application of global non-parametric approaches and parametric models has led to some success, finding the right balance in terms of flexibility and tractability, as well as estimating model parameters from data has turned out to be challenging. In this work, we introduce a sparse Bayesian network model of human pose that is non-parametric with respect to the estimation of both its graph structure and its local distributions. We describe an efficient sampling scheme for our model and show its tractability for the computation of exact log-likelihoods. We empirically validate our approach on the Human 3.6M dataset and demonstrate superior performance to global models and parametric networks. We further illustrate our model's ability to represent and compose poses not present in the training set (compositionality) and describe a speed-accuracy trade-off that allows realtime scoring of poses.

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Thumb xl jhuang
Towards understanding action recognition

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3192-3199, IEEE, Sydney, Australia, December 2013 (inproceedings)

Abstract
Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using thoroughly-annotated data of human actions. We annotate human Joints for the HMDB dataset (J-HMDB). This annotation can be used to derive ground truth optical flow and segmentation. We evaluate current methods using this dataset and systematically replace the output of various algorithms with ground truth. This enables us to discover what is important – for example, should we work on improving flow algorithms, estimating human bounding boxes, or enabling pose estimation? In summary, we find that highlevel pose features greatly outperform low/mid level features; in particular, pose over time is critical, but current pose estimation algorithms are not yet reliable enough to provide this information. We also find that the accuracy of a top-performing action recognition framework can be greatly increased by refining the underlying low/mid level features; this suggests it is important to improve optical flow and human detection algorithms. Our analysis and JHMDB dataset should facilitate a deeper understanding of action recognition algorithms.

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]


Thumb xl embs2013
Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia

Homer, M., Harrison, M., Black, M. J., Perge, J., Cash, S., Friehs, G., Hochberg, L.

In 6th International IEEE EMBS Conference on Neural Engineering, pages: 715-718, San Diego, November 2013 (inproceedings)

Abstract
Kalman filtering is a common method to decode neural signals from the motor cortex. In clinical research investigating the use of intracortical brain computer interfaces (iBCIs), the technique enabled people with tetraplegia to control assistive devices such as a computer or robotic arm directly from their neural activity. For reaching movements, the Kalman filter typically estimates the instantaneous endpoint velocity of the control device. Here, we analyzed attempted arm/hand movements by people with tetraplegia to control a cursor on a computer screen to reach several circular targets. A standard velocity Kalman filter is enhanced to additionally decode for the cursor’s position. We then mix decoded velocity and position to generate cursor movement commands. We analyzed data, offline, from two participants across six sessions. Root mean squared error between the actual and estimated cursor trajectory improved by 12.2 ±10.5% (pairwise t-test, p<0.05) as compared to a standard velocity Kalman filter. The findings suggest that simultaneously decoding for intended velocity and position and using them both to generate movement commands can improve the performance of iBCIs.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl pic cviu13
Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey

Wang, C., Komodakis, N., Paragios, N.

Computer Vision and Image Understanding (CVIU), 117(11):1610-1627, November 2013 (article)

Abstract
In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the emergence of efficient inference methods. During the past decade, a variety of MRF models as well as inference and learning methods have been developed for addressing numerous low, mid and high-level vision problems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed significant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based models and expands the domain of solvable problems. This survey provides a compact and informative summary of the major literature in this research topic.

Publishers site pdf [BibTex]

Publishers site pdf [BibTex]


no image
Multi-robot cooperative spherical-object tracking in 3D space based on particle filters

Ahmad, A., Lima, P.

Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (article)

Abstract
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.

DOI [BibTex]

DOI [BibTex]


no image
Multi-Robot Cooperative Object Tracking Based on Particle Filters

Ahmad, A., Lima, P.

In Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (inproceedings)

Abstract
This article presents a cooperative approach for tracking a moving object by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl implied flow whue
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

pdf Project Page Project Page [BibTex]

pdf Project Page Project Page [BibTex]


no image
D2.1.4 RoCKIn@Work - Innovation in Mobile Industrial Manipulation Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Work competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Work competition, which served as inspiration for RoCKIn@Work. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

[BibTex]

[BibTex]


no image
D2.1.1 RoCKIn@Home - A Competition for Domestic Service Robots Competition Design, Rule Book, and Scenario Construction

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.7), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, sep 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics in Europe and to demonstrate the innovation potential of robotics applications for solving societal challenges and improving the competitiveness of Europe in the global markets. In order to achieve these objectives, RoCKIn develops two competitions, one for domestic service robots (RoCKIn@Home) and one for industrial robots in factories (RoCKIn-@Work). These competitions are designed around challenges that are based on easy-to-communicate and convincing user stories, which catch the interest of both the general public and the scientifc community. The latter is in particular interested in solving open scientific challenges and to thoroughly assess, compare, and evaluate the developed approaches with competing ones. To allow this to happen, the competitions are designed to meet the requirements of benchmarking procedures and good experimental methods. The integration of benchmarking technology with the competition concept is one of the main objectives of RoCKIn. This document describes the first version of the RoCKIn@Home competition, which will be held for the first time in 2014. The first chapter of the document gives a brief overview, outlining the purpose and objective of the competition, the methodological approach taken by the RoCKIn project, the user story upon which the competition is based, the structure and organization of the competition, and the commonalities and differences with the RoboCup@Home competition, which served as inspiration for RoCKIn@Home. The second chapter provides details on the user story and analyzes the scientific and technical challenges it poses. Consecutive chapters detail the competition scenario, the competition design, and the organization of the competition. The appendices contain information on a library of functionalities, which we believe are needed, or at least useful, for building competition entries, details on the scenario construction, and a detailed account of the benchmarking infrastructure needed — and provided by RoCKIn.

[BibTex]

[BibTex]


Thumb xl bmvc teaser
Distribution Fields with Adaptive Kernels for Large Displacement Image Alignment

Mears, B., Sevilla-Lara, L., Learned-Miller, E.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

Abstract
While region-based image alignment algorithms that use gradient descent can achieve sub-pixel accuracy when they converge, their convergence depends on the smoothness of the image intensity values. Image smoothness is often enforced through the use of multiscale approaches in which images are smoothed and downsampled. Yet, these approaches typically use fixed smoothing parameters which may be appropriate for some images but not for others. Even for a particular image, the optimal smoothing parameters may depend on the magnitude of the transformation. When the transformation is large, the image should be smoothed more than when the transformation is small. Further, with gradient-based approaches, the optimal smoothing parameters may change with each iteration as the algorithm proceeds towards convergence. We address convergence issues related to the choice of smoothing parameters by deriving a Gauss-Newton gradient descent algorithm based on distribution fields (DFs) and proposing a method to dynamically select smoothing parameters at each iteration. DF and DF-like representations have previously been used in the context of tracking. In this work we incorporate DFs into a full affine model for region-based alignment and simultaneously search over parameterized sets of geometric and photometric transforms. We use a probabilistic interpretation of DFs to select smoothing parameters at each step in the optimization and show that this results in improved convergence rates.

pdf code [BibTex]

pdf code [BibTex]


Thumb xl teaser mrg
Metric Regression Forests for Human Pose Estimation

(Best Science Paper Award)

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ijrr
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl imgf0006
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

Google Patents [BibTex]

Google Patents [BibTex]


Thumb xl cover3
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

pdf Project Page [BibTex]


no image
D1.1 Specification of General Features of Scenarios and Robots for Benchmarking Through Competitions

Ahmad, A., Awaad, I., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.0), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, July 2013 (techreport)

Abstract
RoCKIn is a EU-funded project aiming to foster scientific progress and innovation in cognitive systems and robotics through the design and implementation of competitions. An additional objective of RoCKIn is to increase public awareness of the current state-of-the-art in robotics and the innovation potential of robotics applications. From these objectives several requirements for the work performed in RoCKIn can be derived: The RoCKIn competitions must start from convincing, easy-to-communicate user stories, that catch the attention of relevant stakeholders, the media, and the crowd. The user stories play the role of a mid- to long-term vision for a competition. Preferably, the user stories address economic, societal, or environmental problems. The RoCKIn competitions must pose open scientific challenges of interest to sufficiently many researchers to attract existing and new teams of robotics researchers for participation in the competition. The competitions need to promise some suitable reward, such as recognition in the scientific community, publicity for a team’s work, awards, or prize money, to justify the effort a team puts into the development of a competition entry. The competitions should be designed in such a way that they reward general, scientifically sound solutions to the challenge problems; such general solutions should score better than approaches that work only in narrowly defined contexts and are considred over-engineered. The challenges motivating the RoCKIn competitions must be broken down into suitable intermediate goals that can be reached with a limited team effort until the next competition and the project duration. The RoCKIn competitions must be well-defined and well-designed, with comprehensive rule books and instructions for the participants in order to guarantee a fair competition. The RoCKIn competitions must integrate competitions with benchmarking in order to provide comprehensive feedback for the teams about the suitability of particular functional modules, their overall architecture, and system integration. This document takes the first steps towards the RoCKIn goals. After outlining our approach, we present several user stories for further discussion within the community. The main objectives of this document are to identify and document relevant scenario features and the tasks and functionalities subject for benchmarking in the competitions.

[BibTex]

[BibTex]


no image
SocRob-MSL 2013 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Serafim, M., Lima, P.

17th Annual RoboCup International Symposium 2013, July 2013 (techreport)

Abstract
This paper describes the status of the SocRob MSL robotic soccer team as required by the RoboCup 2013 qualification procedures. The team’s latest scientific and technical developments, since its last participation in RoboCup MSL, include further advances in cooperative perception; novel communication methods for distributed robotics; progressive deployment of the ROS middleware; improved localization through feature tracking and Mixture MCL; novel planning methods based on Petri nets and decision-theoretic frameworks; and hardware developments in ball-handling/kicking devices.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl teaser
Visualizing dimensionality reduction of systems biology data

Lehrmann, A. M., Huber, M., Polatkan, A. C., Pritzkau, A., Nieselt, K.

Data Mining and Knowledge Discovery, 1(27):146-165, Springer, July 2013 (article)

pdf SpRay [BibTex]

pdf SpRay [BibTex]


Thumb xl thumb
Poselet conditioned pictorial structures

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 588 - 595, IEEE, Portland, OR, June 2013 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl thumb
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]