Header logo is ps


2011


Thumb xl ijnmbe1
Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity

Prihambodo Saksono, Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

International Journal for Numerical Methods in Biomedical Engineering, 87(1-5):96–114, 2011 (article)

Abstract
This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic-based split scheme along with the one-equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea.

[BibTex]

2011

[BibTex]


Thumb xl sufacematching ssvm11
Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

Wang, C., Bronstein, M. M., Bronstein, A. M., Paragios, N.

In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl viewpointinvariantmodel iccv11.
Viewpoint Invariant 3D Landmark Model Inference from Monocular 2D Images Using Higher-Order Priors

Wang, C., Zeng, Y., Simon, L., Kakadiaris, I., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Correspondence estimation from non-rigid motion information

Wulff, J., Lotz, T., Stehle, T., Aach, T., Chase, J. G.

In Proc. SPIE, Proc. SPIE, (Editors: B. M. Dawant, D. R. Haynor), SPIE, 2011 (inproceedings)

Abstract
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl ijcv2012
Predicting Articulated Human Motion from Spatial Processes

Soren Hauberg, Kim S. Pedersen

International Journal of Computer Vision, 94, pages: 317-334, Springer Netherlands, 2011 (article)

Publishers site Code Paper site PDF [BibTex]

Publishers site Code Paper site PDF [BibTex]


Thumb xl icann2011
An Empirical Study on the Performance of Spectral Manifold Learning Techniques

Peter Mysling, Soren Hauberg, Kim S. Pedersen

In Artificial Neural Networks and Machine Learning – ICANN 2011, 6791, pages: 347-354, Lecture Notes in Computer Science, (Editors: Honkela, Timo and Duch, Włodzisław and Girolami, Mark and Kaski, Samuel), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Separation of visual object features and grasp strategy in primate ventral premotor cortex

Vargas-Irwin, C., Franquemont, L., Black, M., Donoghue, J.

Neural Control of Movement, 21st Annual Conference, 2011 (conference)

[BibTex]

[BibTex]

2007


Thumb xl floweval
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

pdf [BibTex]

2007

pdf [BibTex]


Thumb xl iccv07b
Shining a light on human pose: On shadows, shading and the estimation of pose and shape,

Balan, A., Black, M. J., Haussecker, H., Sigal, L.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Ensemble spiking activity as a source of cortical control signals in individuals with tetraplegia

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., Hochberg, L. R.

Biomedical Engineering Society, BMES, september 2007 (conference)

[BibTex]

[BibTex]


Thumb xl cvpr07scape
Detailed human shape and pose from images

Balan, A., Sigal, L., Black, M. J., Davis, J., Haussecker, H.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 1-8, Minneapolis, June 2007 (inproceedings)

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl aperture
Decoding grasp aperture from motor-cortical population activity

Artemiadis, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 518-521, May 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ner07
Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Friehs, G., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 486-489, May 2007 (inproceedings)

Abstract
Basic neural-prosthetic control of a computer cursor has been recently demonstrated by Hochberg et al. [1] using the BrainGate system (Cyberkinetics Neurotechnology Systems, Inc.). While these results demonstrate the feasibility of intracortically-driven prostheses for humans with paralysis, a practical cursor-based computer interface requires more precise cursor control and the ability to “click” on areas of interest. Here we present a practical point and click device that decodes both continuous states (e.g. cursor kinematics) and discrete states (e.g. click state) from single neural population in human motor cortex. We describe a probabilistic multi-state decoder and the necessary training paradigms that enable point and click cursor control by a human with tetraplegia using an implanted microelectrode array. We present results from multiple recording sessions and quantify the point and click performance.

pdf [BibTex]

pdf [BibTex]


Thumb xl pedestal
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

pdf [BibTex]

pdf [BibTex]


Thumb xl ijcvflow2
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Thumb xl screen shot 2012 06 06 at 11.20.23 am
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In Artificial Intelligence and Statistics (AIStats), 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Point-and-click cursor control by a person with tetraplegia using an intracortical neural interface system

Kim, S., Simeral, J. D., Hochberg, L. R., Friehs, G., Donoghue, J. P., Black, M. J.

Program No. 517.2. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


Thumb xl arrayhd
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]


Thumb xl implant
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2012 02 23 at 1.59.51 pm
Learning Appearances with Low-Rank SVM

Wolf, L., Jhuang, H., Hazan, T.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Neural correlates of grip aperture in primary motor cortex

Vargas-Irwin, C., Shakhnarovich, G., Artemiadis, P., Donoghue, J. P., Black, M. J.

Program No. 517.10. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


no image
Directional tuning in motor cortex of a person with ALS

Simeral, J. D., Donoghue, J. P., Black, M. J., Friehs, G. M., Brown, R. H., Krivickas, L. S., Hochberg, L. R.

Program No. 517.4. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


Thumb xl mabuse
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

(CS-07-03), Brown University, Department of Computer Science, 2007 (techreport)

pdf [BibTex]

pdf [BibTex]


Thumb xl srf
Steerable random fields

(Best Paper Award, INI-Graphics Net, 2008)

Roth, S., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Toward standardized assessment of pointing devices for brain-computer interfaces

Donoghue, J., Simeral, J., Kim, S., G.M. Friehs, L. H., Black, M.

Program No. 517.16. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


Thumb xl alg
A Biologically Inspired System for Action Recognition

Jhuang, H., Serre, T., Wolf, L., Poggio, T.

In International Conference on Computer Vision (ICCV), 2007 (inproceedings)

code pdf [BibTex]

code pdf [BibTex]


no image
AREADNE Research in Encoding And Decoding of Neural Ensembles

Shakhnarovich, G., Hochberg, L. R., Donoghue, J. P., Stein, J., Brown, R. H., Krivickas, L. S., Friehs, G. M., Black, M. J.

Program No. 517.8. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]

2006


no image
Finding directional movement representations in motor cortical neural populations using nonlinear manifold learning

WorKim, S., Simeral, J., Jenkins, O., Donoghue, J., Black, M.

World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, August 2006 (conference)

[BibTex]

2006

[BibTex]


Thumb xl spikes
A non-parametric Bayesian approach to spike sorting

Wood, F., Goldwater, S., Black, M. J.

In International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages: 1165-1169, New York, NY, August 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl amdo
Predicting 3D people from 2D pictures

(Best Paper)

Sigal, L., Black, M. J.

In Proc. IV Conf. on Articulated Motion and DeformableObjects (AMDO), LNCS 4069, pages: 185-195, July 2006 (inproceedings)

Abstract
We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time

pdf pdf from publisher Video [BibTex]

pdf pdf from publisher Video [BibTex]


Thumb xl specular
Specular flow and the recovery of surface structure

Roth, S., Black, M.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 1869-1876, New York, NY, June 2006 (inproceedings)

Abstract
In scenes containing specular objects, the image motion observed by a moving camera may be an intermixed combination of optical flow resulting from diffuse reflectance (diffuse flow) and specular reflection (specular flow). Here, with few assumptions, we formalize the notion of specular flow, show how it relates to the 3D structure of the world, and develop an algorithm for estimating scene structure from 2D image motion. Unlike previous work on isolated specular highlights we use two image frames and estimate the semi-dense flow arising from the specular reflections of textured scenes. We parametrically model the image motion of a quadratic surface patch viewed from a moving camera. The flow is modeled as a probabilistic mixture of diffuse and specular components and the 3D shape is recovered using an Expectation-Maximization algorithm. Rather than treating specular reflections as noise to be removed or ignored, we show that the specular flow provides additional constraints on scene geometry that improve estimation of 3D structure when compared with reconstruction from diffuse flow alone. We demonstrate this for a set of synthetic and real sequences of mixed specular-diffuse objects.

pdf [BibTex]

pdf [BibTex]


Thumb xl balaniccv06
An adaptive appearance model approach for model-based articulated object tracking

Balan, A., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 1, pages: 758-765, New York, NY, June 2006 (inproceedings)

Abstract
The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict self occlusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.

pdf [BibTex]

pdf [BibTex]


Thumb xl silly
Measure locally, reason globally: Occlusion-sensitive articulated pose estimation

Sigal, L., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 2041-2048, New York, NY, June 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl biorob
Statistical analysis of the non-stationarity of neural population codes

Kim, S., Wood, F., Fellows, M., Donoghue, J. P., Black, M. J.

In BioRob 2006, The first IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 295-299, Pisa, Italy, Febuary 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
How to choose the covariance for Gaussian process regression independently of the basis

Franz, M., Gehler, P.

In Proceedings of the Workshop Gaussian Processes in Practice, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl screen shot 2012 06 06 at 11.30.03 am
The rate adapting poisson model for information retrieval and object recognition

Gehler, P. V., Holub, A. D., Welling, M.

In Proceedings of the 23rd international conference on Machine learning, pages: 337-344, ICML ’06, ACM, New York, NY, USA, 2006 (inproceedings)

project page pdf DOI [BibTex]

project page pdf DOI [BibTex]


Thumb xl screen shot 2012 06 06 at 11.31.38 am
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]


Thumb xl iwcm
Tracking complex objects using graphical object models

Sigal, L., Zhu, Y., Comaniciu, D., Black, M. J.

In International Workshop on Complex Motion, LNCS 3417, pages: 223-234, Springer-Verlag, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl evatr
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

pdf abstract [BibTex]

pdf abstract [BibTex]


Thumb xl neuralcomp
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

pdf preprint pdf from publisher abstract [BibTex]

pdf preprint pdf from publisher abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 16 um 10.16.16
Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking (extended abstract)

Sigal, L., Black, M. J.

In Learning, Representation and Context for Human Sensing in Video Workshop (in conjunction with CVPR), 2006 (inproceedings)

pdf poster [BibTex]

pdf poster [BibTex]


Thumb xl springs2
Nonlinear physically-based models for decoding motor-cortical population activity

Shakhnarovich, G., Kim, S., Black, M. J.

In Advances in Neural Information Processing Systems 19, NIPS-2006, pages: 1257-1264, MIT Press, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
A comparison of decoding models for imagined motion from human motor cortex

Kim, S., Simeral, J., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.11. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]


Thumb xl film
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

In Int. Conf. on Image Processing, ICIP, pages: 2641-2644, Atlanta, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bp
Efficient belief propagation with learned higher-order Markov random fields

Lan, X., Roth, S., Huttenlocher, D., Black, M. J.

In European Conference on Computer Vision, ECCV, II, pages: 269-282, Graz, Austria, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl screen shot 2012 06 06 at 11.15.02 am
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

pdf [BibTex]


no image
Modeling neural control of physically realistic movement

Shaknarovich, G., Kim, S., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.12. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]

2005


Thumb xl ivc05
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

pdf pdf from publisher DOI [BibTex]

2005

pdf pdf from publisher DOI [BibTex]


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]