Header logo is ps


2011


Thumb xl dagm2011imagesmall
Shape and pose-invariant correspondences using probabilistic geodesic surface embedding

Tsoli, A., Black, M. J.

In 33rd Annual Symposium of the German Association for Pattern Recognition (DAGM), 6835, pages: 256-265, Lecture Notes in Computer Science, (Editors: Mester, Rudolf and Felsberg, Michael), Springer, 2011 (inproceedings)

Abstract
Correspondence between non-rigid deformable 3D objects provides a foundation for object matching and retrieval, recognition, and 3D alignment. Establishing 3D correspondence is challenging when there are non-rigid deformations or articulations between instances of a class. We present a method for automatically finding such correspondences that deals with significant variations in pose, shape and resolution between pairs of objects.We represent objects as triangular meshes and consider normalized geodesic distances as representing their intrinsic characteristics. Geodesic distances are invariant to pose variations and nearly invariant to shape variations when properly normalized. The proposed method registers two objects by optimizing a joint probabilistic model over a subset of vertex pairs between the objects. The model enforces preservation of geodesic distances between corresponding vertex pairs and inference is performed using loopy belief propagation in a hierarchical scheme. Additionally our method prefers solutions in which local shape information is consistent at matching vertices. We quantitatively evaluate our method and show that is is more accurate than a state of the art method.

pdf talk Project Page [BibTex]

2011

pdf talk Project Page [BibTex]


no image
Visual orientation and direction selectivity through thalamic synchrony

Kelly, S., Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Online (conference)

[BibTex]

[BibTex]


no image
Use of the BrainGate neural inteface system for more than five years by a woman with tetraplegia

Hochberg, L., Bacher, D., Barefoot, L., Berhanu, E., Black, M., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Berge, J., Rosler, D., Schmansky, N., Simeral, J., Travers, B., Truccolo, W., Donoghue, J.

2011 Abstract Viewer and Itinerary Planner, Society for Neuroscience, 2011, Onine (conference)

[BibTex]

[BibTex]


no image
Extracting 3D Structures from Biomedical Data

Xianghua Xie, Si Yong Yeo, Igor Sazonov, Perumal Nithiarasu

Proceedings of the 5th International Conference on Bioinformatics and Biomedical Engineering, 2011 (conference)

[BibTex]

[BibTex]


Thumb xl illumination cvpr11
Illumination Estimation and Cast Shadow Detection through a Higher-order Graphical Model

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl femursegmentation miccai11
Pose-invariant 3D Proximal Femur Estimation through Bi-Planar Image Segmentation with Hierarchical Higher-Order Graph-based Priors

Wang, C., Boussaid, H., Simon, L., Lazennec, J., Paragios, N.

In International Conference, Medical Image Computing and Computer Assisted Intervention (MICCAI), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl sufacetracking cvpr11
Intrinsic Dense 3D Surface Tracking

Zeng, Y., Wang, C., Wang, Y., Gu, X., Samaras, D., Paragios, N.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl emmcvpr2012
Data-Driven Importance Distributions for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 6819, pages: 287-299, Lecture Notes in Computer Science, (Editors: Boykov, Yuri and Kahl, Fredrik and Lempitsky, Victor and Schmidt, Frank), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site Code PDF Suppl. material [BibTex]

Publishers site Code PDF Suppl. material [BibTex]


Thumb xl kdcv2011 teaser
A Physically Natural Metric for Human Motion and the Associated Brownian Motion Model

Soren Hauberg, Kim Steenstrup Pedersen

In 1st IEEE Workshop on Kernels and Distances for Computer Vision (ICCV workshop), 2011 (inproceedings)

Workshop link [BibTex]

Workshop link [BibTex]


Thumb xl thumb system1
Virtual Visual Servoing for Real-Time Robot Pose Estimation

Gratal, X., Romero, J., Kragic, D.

In International Federation of Automatic Control World Congress, IFAC, 2011 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Cooperative Localization Based on Visually Shared Objects

Lima, P., Santos, P., Oliveira, R., Ahmad, A., Santos, J.

In RoboCup 2010: Robot Soccer World Cup XIV, pages: 350-361, Lecture Notes in Computer Science ; 6556, Springer, Berlin, Germany, 2011 (inproceedings)

Abstract
In this paper we describe a cooperative localization algorithm based on a modification of the Monte Carlo Localization algorithm where, when a robot detects it is lost, particles are spread not uniformly in the state space, but rather according to the information on the location of an object whose distance and bearing is measured by the lost robot. The object location is provided by other robots of the same team using explicit (wireless) communication. Results of application of the method to a team of real robots are presented.

DOI [BibTex]

DOI [BibTex]


Thumb xl ijnmbe1
Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity

Prihambodo Saksono, Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

International Journal for Numerical Methods in Biomedical Engineering, 87(1-5):96–114, 2011 (article)

Abstract
This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic-based split scheme along with the one-equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea.

[BibTex]

[BibTex]


Thumb xl sufacematching ssvm11
Discrete Minimum Distortion Correspondence Problems for Non-rigid Shape Matching

Wang, C., Bronstein, M. M., Bronstein, A. M., Paragios, N.

In International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl viewpointinvariantmodel iccv11.
Viewpoint Invariant 3D Landmark Model Inference from Monocular 2D Images Using Higher-Order Priors

Wang, C., Zeng, Y., Simon, L., Kakadiaris, I., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2011 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Correspondence estimation from non-rigid motion information

Wulff, J., Lotz, T., Stehle, T., Aach, T., Chase, J. G.

In Proc. SPIE, Proc. SPIE, (Editors: B. M. Dawant, D. R. Haynor), SPIE, 2011 (inproceedings)

Abstract
The DIET (Digital Image Elasto Tomography) system is a novel approach to screen for breast cancer using only optical imaging information of the surface of a vibrating breast. 3D tracking of skin surface motion without the requirement of external markers is desirable. A novel approach to establish point correspondences using pure skin images is presented here. Instead of the intensity, motion is used as the primary feature, which can be extracted using optical flow algorithms. Taking sequences of multiple frames into account, this motion information alone is accurate and unambiguous enough to allow for a 3D reconstruction of the breast surface. Two approaches, direct and probabilistic, for this correspondence estimation are presented here, suitable for different levels of calibration information accuracy. Reconstructions show that the results obtained using these methods are comparable in accuracy to marker-based methods while considerably increasing resolution. The presented method has high potential in optical tissue deformation and motion sensing.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


Thumb xl ijcv2012
Predicting Articulated Human Motion from Spatial Processes

Soren Hauberg, Kim S. Pedersen

International Journal of Computer Vision, 94, pages: 317-334, Springer Netherlands, 2011 (article)

Publishers site Code Paper site PDF [BibTex]

Publishers site Code Paper site PDF [BibTex]


Thumb xl icann2011
An Empirical Study on the Performance of Spectral Manifold Learning Techniques

Peter Mysling, Soren Hauberg, Kim S. Pedersen

In Artificial Neural Networks and Machine Learning – ICANN 2011, 6791, pages: 347-354, Lecture Notes in Computer Science, (Editors: Honkela, Timo and Duch, Włodzisław and Girolami, Mark and Kaski, Samuel), Springer Berlin Heidelberg, 2011 (inproceedings)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


no image
Separation of visual object features and grasp strategy in primate ventral premotor cortex

Vargas-Irwin, C., Franquemont, L., Black, M., Donoghue, J.

Neural Control of Movement, 21st Annual Conference, 2011 (conference)

[BibTex]

[BibTex]

2005


Thumb xl ivc05
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

pdf pdf from publisher DOI [BibTex]

2005

pdf pdf from publisher DOI [BibTex]


Thumb xl pets 2005 copy
A quantitative evaluation of video-based 3D person tracking

Balan, A. O., Sigal, L., Black, M. J.

In The Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, VS-PETS, pages: 349-356, October 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl embs05
Inferring attentional state and kinematics from motor cortical firing rates

Wood, F., Prabhat, , Donoghue, J. P., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1544-1547, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl arma
Motor cortical decoding using an autoregressive moving average model

Fisher, J., Black, M. J.

In Proc. IEEE Engineering in Medicine and Biology Society, pages: 1469-1472, September 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl cvpr2005
Fields of Experts: A framework for learning image priors

Roth, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, 2, pages: 860-867, June 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl iccv05roth
On the spatial statistics of optical flow

(Marr Prize, Honorable Mention)

Roth, S., Black, M. J.

In International Conf. on Computer Vision, International Conf. on Computer Vision, pages: 42-49, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl nips05
Modeling neural population spiking activity with Gibbs distributions

Wood, F., Roth, S., Black, M. J.

In Advances in Neural Information Processing Systems 18, pages: 1537-1544, 2005 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Energy-based models of motor cortical population activity

Wood, F., Black, M.

Program No. 689.20. 2005 Abstract Viewer/Itinerary Planner, Society for Neuroscience, Washington, DC, 2005 (conference)

abstract [BibTex]

abstract [BibTex]

1999


Thumb xl bildschirmfoto 2013 01 14 um 09.07.06
Edges as outliers: Anisotropic smoothing using local image statistics

Black, M. J., Sapiro, G.

In Scale-Space Theories in Computer Vision, Second Int. Conf., Scale-Space ’99, pages: 259-270, LNCS 1682, Springer, Corfu, Greece, September 1999 (inproceedings)

Abstract
Edges are viewed as statistical outliers with respect to local image gradient magnitudes. Within local image regions we compute a robust statistical measure of the gradient variation and use this in an anisotropic diffusion framework to determine a spatially varying "edge-stopping" parameter σ. We show how to determine this parameter for two edge-stopping functions described in the literature (Perona-Malik and the Tukey biweight). Smoothing of the image is related the local texture and in regions of low texture, small gradient values may be treated as edges whereas in regions of high texture, large gradient magnitudes are necessary before an edge is preserved. Intuitively these results have similarities with human perceptual phenomena such as masking and "popout". Results are shown on a variety of standard images.

pdf [BibTex]

1999

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 07 um 12.35.15
Probabilistic detection and tracking of motion discontinuities

(Marr Prize, Honorable Mention)

Black, M. J., Fleet, D. J.

In Int. Conf. on Computer Vision, ICCV-99, pages: 551-558, ICCV, Corfu, Greece, September 1999 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 09.38.15
Parameterized modeling and recognition of activities

Yacoob, Y., Black, M. J.

Computer Vision and Image Understanding, 73(2):232-247, 1999 (article)

Abstract
In this paper we consider a class of human activities—atomic activities—which can be represented as a set of measurements over a finite temporal window (e.g., the motion of human body parts during a walking cycle) and which has a relatively small space of variations in performance. A new approach for modeling and recognition of atomic activities that employs principal component analysis and analytical global transformations is proposed. The modeling of sets of exemplar instances of activities that are similar in duration and involve similar body part motions is achieved by parameterizing their representation using principal component analysis. The recognition of variants of modeled activities is achieved by searching the space of admissible parameterized transformations that these activities can undergo. This formulation iteratively refines the recognition of the class to which the observed activity belongs and the transformation parameters that relate it to the model in its class. We provide several experiments on recognition of articulated and deformable human motions from image motion parameters.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 09.12.47
Explaining optical flow events with parameterized spatio-temporal models

Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’99, pages: 326-332, IEEE, Fort Collins, CO, 1999 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]

1996


Thumb xl bildschirmfoto 2013 01 14 um 10.40.24
Cardboard people: A parameterized model of articulated motion

Ju, S. X., Black, M. J., Yacoob, Y.

In 2nd Int. Conf. on Automatic Face- and Gesture-Recognition, pages: 38-44, Killington, Vermont, October 1996 (inproceedings)

Abstract
We extend the work of Black and Yacoob on the tracking and recognition of human facial expressions using parameterized models of optical flow to deal with the articulated motion of human limbs. We define a "cardboard person model" in which a person's limbs are represented by a set of connected planar patches. The parameterized image motion of these patches is constrained to enforce articulated motion and is solved for directly using a robust estimation technique. The recovered motion parameters provide a rich and concise description of the activity that can be used for recognition. We propose a method for performing view-based recognition of human activities from the optical flow parameters that extends previous methods to cope with the cyclical nature of human motion. We illustrate the method with examples of tracking human legs over long image sequences.

pdf [BibTex]

1996

pdf [BibTex]


Thumb xl bildschirmfoto 2012 12 07 um 11.52.07
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl bildschirmfoto 2012 12 07 um 11.59.00
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.48.32
Skin and Bones: Multi-layer, locally affine, optical flow and regularization with transparency

(Nominated: Best paper)

Ju, S., Black, M. J., Jepson, A. D.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’96, pages: 307-314, San Francisco, CA, June 1996 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 10.52.58
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

In Proc. Fourth European Conf. on Computer Vision, ECCV’96, pages: 329-342, LNCS 1064, Springer Verlag, Cambridge, England, April 1996 (inproceedings)

pdf video [BibTex]

pdf video [BibTex]


Thumb xl bildschirmfoto 2012 12 07 um 12.09.01
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]

1992


Thumb xl arvo92
Psychophysical implications of temporal persistence in early vision: A computational account of representational momentum

Tarr, M. J., Black, M. J.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, 33, pages: 1050, May 1992 (conference)

abstract [BibTex]

1992

abstract [BibTex]


Thumb xl bildschirmfoto 2013 01 14 um 12.01.23
Combining intensity and motion for incremental segmentation and tracking over long image sequences

Black, M. J.

In Proc. Second European Conf. on Computer Vision, ECCV-92, pages: 485-493, LNCS 588, Springer Verlag, May 1992 (inproceedings)

pdf video abstract [BibTex]

pdf video abstract [BibTex]