Perceiving Systems, Computer Vision

A physically-based approach to reflection separation: from physical modeling to constrained optimization

2014

Article

ps


We propose a physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass. The input consists of three polarized images, each captured from the same view point but with a different polarizer angle separated by 45 degrees. The output is the high-quality separation of the reflection and background layers from each of the input images. A main technical challenge for this problem is that the mixing coefficient for the reflection and background layers depends on the angle of incidence and the orientation of the plane of incidence, which are spatially varying over the pixels of an image. Exploiting physical properties of polarization for a double-surfaced glass medium, we propose a multiscale scheme which automatically finds the optimal separation of the reflection and background layers. Through experiments, we demonstrate that our approach can generate superior results to those of previous methods.

Author(s): Kong, Naejin and Tai, Yu-Wing and Shin, Joseph S.
Journal: IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)
Volume: 36
Number (issue): 2
Pages: 209--221
Year: 2014
Month: February
Publisher: IEEE Computer Society

Department(s): Perceiving Systems
Bibtex Type: Article (article)
Paper Type: Journal

Links: Publisher site

BibTex

@article{kong14pami,
  title = {A physically-based approach to reflection separation: from physical modeling to constrained optimization},
  author = {Kong, Naejin and Tai, Yu-Wing and Shin, Joseph S.},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI)},
  volume = {36},
  number = {2},
  pages = {209--221},
  publisher = {IEEE Computer Society},
  month = feb,
  year = {2014},
  doi = {},
  month_numeric = {2}
}