Header logo is ps


2018


Thumb xl coregpatentfig
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

text [BibTex]

2017


Thumb xl bodytalk
Crowdshaping Realistic 3D Avatars with Words

Streuber, S., Ramirez, M. Q., Black, M., Zuffi, S., O’Toole, A., Hill, M. Q., Hahn, C. A.

August 2017, Application PCT/EP2017/051954 (misc)

Abstract
A method for generating a body shape, comprising the steps: - receiving one or more linguistic descriptors related to the body shape; - retrieving an association between the one or more linguistic descriptors and a body shape; and - generating the body shape, based on the association.

Google Patents [BibTex]

2017

Google Patents [BibTex]


Thumb xl mosh heroes icon
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

July 2017, U.S.~Patent 9,710,964 B2. (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

Google Patents MoSh Project [BibTex]


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

[BibTex]

[BibTex]

2013


Thumb xl houghforest
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

code Project Page [BibTex]

2013

code Project Page [BibTex]