Header logo is ps


2020


Machine learning systems and methods of estimating body shape from images
Machine learning systems and methods of estimating body shape from images

Black, M., Rachlin, E., Heron, N., Loper, M., Weiss, A., Hu, K., Hinkle, T., Kristiansen, M.

(US Patent 10,679,046), June 2020 (patent)

Abstract
Disclosed is a method including receiving an input image including a human, predicting, based on a convolutional neural network that is trained using examples consisting of pairs of sensor data, a corresponding body shape of the human and utilizing the corresponding body shape predicted from the convolutional neural network as input to another convolutional neural network to predict additional body shape metrics.

[BibTex]

2020

[BibTex]


Machine learning systems and methods for augmenting images
Machine learning systems and methods for augmenting images

Black, M., Rachlin, E., Lee, E., Heron, N., Loper, M., Weiss, A., Smith, D.

(US Patent 10,529,137 B1), January 2020 (patent)

Abstract
Disclosed is a method including receiving visual input comprising a human within a scene, detecting a pose associated with the human using a trained machine learning model that detects human poses to yield a first output, estimating a shape (and optionally a motion) associated with the human using a trained machine learning model associated that detects shape (and optionally motion) to yield a second output, recognizing the scene associated with the visual input using a trained convolutional neural network which determines information about the human and other objects in the scene to yield a third output, and augmenting reality within the scene by leveraging one or more of the first output, the second output, and the third output to place 2D and/or 3D graphics in the scene.

[BibTex]

[BibTex]

2013


Puppet Flow
Puppet Flow

Zuffi, S., Black, M. J.

(7), Max Planck Institute for Intelligent Systems, October 2013 (techreport)

Abstract
We introduce Puppet Flow (PF), a layered model describing the optical flow of a person in a video sequence. We consider video frames composed by two layers: a foreground layer corresponding to a person, and background. We model the background as an affine flow field. The foreground layer, being a moving person, requires reasoning about the articulated nature of the human body. We thus represent the foreground layer with the Deformable Structures model (DS), a parametrized 2D part-based human body representation. We call the motion field defined through articulated motion and deformation of the DS model, a Puppet Flow. By exploiting the DS representation, Puppet Flow is a parametrized optical flow field, where parameters are the person's pose, gender and body shape.

pdf Project Page Project Page [BibTex]

2013

pdf Project Page Project Page [BibTex]


Human Pose Calculation from Optical Flow Data
Human Pose Calculation from Optical Flow Data

Black, M., Loper, M., Romero, J., Zuffi, S.

European Patent Application EP 2843621 , August 2013 (patent)

Google Patents [BibTex]

Google Patents [BibTex]


A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them

Sun, D., Roth, S., Black, M. J.

(CS-10-03), Brown University, Department of Computer Science, January 2013 (techreport)

pdf [BibTex]

pdf [BibTex]


Class-Specific Hough Forests for Object Detection
Class-Specific Hough Forests for Object Detection

Gall, J., Lempitsky, V.

In Decision Forests for Computer Vision and Medical Image Analysis, pages: 143-157, 11, (Editors: Criminisi, A. and Shotton, J.), Springer, 2013 (incollection)

code Project Page [BibTex]

code Project Page [BibTex]