Header logo is ps


2018


Thumb xl dip final
Deep Inertial Poser: Learning to Reconstruct Human Pose from Sparse Inertial Measurements in Real Time

Huang, Y., Kaufmann, M., Aksan, E., Black, M. J., Hilliges, O., Pons-Moll, G.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 37, pages: 185:1-185:15, ACM, November 2018, Two first authors contributed equally (article)

Abstract
We demonstrate a novel deep neural network capable of reconstructing human full body pose in real-time from 6 Inertial Measurement Units (IMUs) worn on the user's body. In doing so, we address several difficult challenges. First, the problem is severely under-constrained as multiple pose parameters produce the same IMU orientations. Second, capturing IMU data in conjunction with ground-truth poses is expensive and difficult to do in many target application scenarios (e.g., outdoors). Third, modeling temporal dependencies through non-linear optimization has proven effective in prior work but makes real-time prediction infeasible. To address this important limitation, we learn the temporal pose priors using deep learning. To learn from sufficient data, we synthesize IMU data from motion capture datasets. A bi-directional RNN architecture leverages past and future information that is available at training time. At test time, we deploy the network in a sliding window fashion, retaining real time capabilities. To evaluate our method, we recorded DIP-IMU, a dataset consisting of 10 subjects wearing 17 IMUs for validation in 64 sequences with 330,000 time instants; this constitutes the largest IMU dataset publicly available. We quantitatively evaluate our approach on multiple datasets and show results from a real-time implementation. DIP-IMU and the code are available for research purposes.

data code pdf preprint video DOI Project Page [BibTex]

2018

data code pdf preprint video DOI Project Page [BibTex]


Thumb xl cover
Deep Neural Network-based Cooperative Visual Tracking through Multiple Micro Aerial Vehicles

Price, E., Lawless, G., Ludwig, R., Martinovic, I., Buelthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 3(4):3193-3200, IEEE, October 2018, Also accepted and presented in the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
Multi-camera tracking of humans and animals in outdoor environments is a relevant and challenging problem. Our approach to it involves a team of cooperating micro aerial vehicles (MAVs) with on-board cameras only. DNNs often fail at objects with small scale or far away from the camera, which are typical characteristics of a scenario with aerial robots. Thus, the core problem addressed in this paper is how to achieve on-board, online, continuous and accurate vision-based detections using DNNs for visual person tracking through MAVs. Our solution leverages cooperation among multiple MAVs and active selection of most informative regions of image. We demonstrate the efficiency of our approach through simulations with up to 16 robots and real robot experiments involving two aerial robots tracking a person, while maintaining an active perception-driven formation. ROS-based source code is provided for the benefit of the community.

Published Version link (url) DOI [BibTex]

Published Version link (url) DOI [BibTex]


Thumb xl alice
First Impressions of Personality Traits From Body Shapes

Hu, Y., Parde, C. J., Hill, M. Q., Mahmood, N., O’Toole, A. J.

Psychological Science, 29(12):1969-–1983, October 2018 (article)

Abstract
People infer the personalities of others from their facial appearance. Whether they do so from body shapes is less studied. We explored personality inferences made from body shapes. Participants rated personality traits for male and female bodies generated with a three-dimensional body model. Multivariate spaces created from these ratings indicated that people evaluate bodies on valence and agency in ways that directly contrast positive and negative traits from the Big Five domains. Body-trait stereotypes based on the trait ratings revealed a myriad of diverse body shapes that typify individual traits. Personality-trait profiles were predicted reliably from a subset of the body-shape features used to specify the three-dimensional bodies. Body features related to extraversion and conscientiousness were predicted with the highest consensus, followed by openness traits. This study provides the first comprehensive look at the range, diversity, and reliability of personality inferences that people make from body shapes.

publisher site pdf DOI [BibTex]

publisher site pdf DOI [BibTex]


Thumb xl fict 05 00018 g003
Visual Perception and Evaluation of Photo-Realistic Self-Avatars From 3D Body Scans in Males and Females

Thaler, A., Piryankova, I., Stefanucci, J. K., Pujades, S., de la Rosa, S., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

Frontiers in ICT, 5, pages: 1-14, September 2018 (article)

Abstract
The creation or streaming of photo-realistic self-avatars is important for virtual reality applications that aim for perception and action to replicate real world experience. The appearance and recognition of a digital self-avatar may be especially important for applications related to telepresence, embodied virtual reality, or immersive games. We investigated gender differences in the use of visual cues (shape, texture) of a self-avatar for estimating body weight and evaluating avatar appearance. A full-body scanner was used to capture each participant's body geometry and color information and a set of 3D virtual avatars with realistic weight variations was created based on a statistical body model. Additionally, a second set of avatars was created with an average underlying body shape matched to each participant’s height and weight. In four sets of psychophysical experiments, the influence of visual cues on the accuracy of body weight estimation and the sensitivity to weight changes was assessed by manipulating body shape (own, average) and texture (own photo-realistic, checkerboard). The avatars were presented on a large-screen display, and participants responded to whether the avatar's weight corresponded to their own weight. Participants also adjusted the avatar's weight to their desired weight and evaluated the avatar's appearance with regard to similarity to their own body, uncanniness, and their willingness to accept it as a digital representation of the self. The results of the psychophysical experiments revealed no gender difference in the accuracy of estimating body weight in avatars. However, males accepted a larger weight range of the avatars as corresponding to their own. In terms of the ideal body weight, females but not males desired a thinner body. With regard to the evaluation of avatar appearance, the questionnaire responses suggest that own photo-realistic texture was more important to males for higher similarity ratings, while own body shape seemed to be more important to females. These results argue for gender-specific considerations when creating self-avatars.

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl mazen
Robust Physics-based Motion Retargeting with Realistic Body Shapes

Borno, M. A., Righetti, L., Black, M. J., Delp, S. L., Fiume, E., Romero, J.

Computer Graphics Forum, 37, pages: 6:1-12, July 2018 (article)

Abstract
Motion capture is often retargeted to new, and sometimes drastically different, characters. When the characters take on realistic human shapes, however, we become more sensitive to the motion looking right. This means adapting it to be consistent with the physical constraints imposed by different body shapes. We show how to take realistic 3D human shapes, approximate them using a simplified representation, and animate them so that they move realistically using physically-based retargeting. We develop a novel spacetime optimization approach that learns and robustly adapts physical controllers to new bodies and constraints. The approach automatically adapts the motion of the mocap subject to the body shape of a target subject. This motion respects the physical properties of the new body and every body shape results in a different and appropriate movement. This makes it easy to create a varied set of motions from a single mocap sequence by simply varying the characters. In an interactive environment, successful retargeting requires adapting the motion to unexpected external forces. We achieve robustness to such forces using a novel LQR-tree formulation. We show that the simulated motions look appropriate to each character’s anatomy and their actions are robust to perturbations.

pdf video Project Page Project Page [BibTex]

pdf video Project Page Project Page [BibTex]


Thumb xl animage2mask3
Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted

Mölbert, S. C., Thaler, A., Mohler, B. J., Streuber, S., Romero, J., Black, M. J., Zipfel, S., Karnath, H., Giel, K. E.

Psychological Medicine, 48(4):642-653, March 2018 (article)

Abstract
Background: Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. Methods: We investigated n=24 women with AN and n=24 controls. Based on a 3D body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Results: Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Conclusions: Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

doi pdf DOI Project Page [BibTex]


Thumb xl plos1
Body size estimation of self and others in females varying in BMI

Thaler, A., Geuss, M. N., Mölbert, S. C., Giel, K. E., Streuber, S., Romero, J., Black, M. J., Mohler, B. J.

PLoS ONE, 13(2), Febuary 2018 (article)

Abstract
Previous literature suggests that a disturbed ability to accurately identify own body size may contribute to overweight. Here, we investigated the influence of personal body size, indexed by body mass index (BMI), on body size estimation in a non-clinical population of females varying in BMI. We attempted to disentangle general biases in body size estimates and attitudinal influences by manipulating whether participants believed the body stimuli (personalized avatars with realistic weight variations) represented their own body or that of another person. Our results show that the accuracy of own body size estimation is predicted by personal BMI, such that participants with lower BMI underestimated their body size and participants with higher BMI overestimated their body size. Further, participants with higher BMI were less likely to notice the same percentage of weight gain than participants with lower BMI. Importantly, these results were only apparent when participants were judging a virtual body that was their own identity (Experiment 1), but not when they estimated the size of a body with another identity and the same underlying body shape (Experiment 2a). The different influences of BMI on accuracy of body size estimation and sensitivity to weight change for self and other identity suggests that effects of BMI on visual body size estimation are self-specific and not generalizable to other bodies.

pdf DOI Project Page [BibTex]


Thumb xl yanzhang clustering
Temporal Human Action Segmentation via Dynamic Clustering

Zhang, Y., Sun, H., Tang, S., Neumann, H.

arXiv preprint arXiv:1803.05790, 2018 (article)

Abstract
We present an effective dynamic clustering algorithm for the task of temporal human action segmentation, which has comprehensive applications such as robotics, motion analysis, and patient monitoring. Our proposed algorithm is unsupervised, fast, generic to process various types of features, and applica- ble in both the online and offline settings. We perform extensive experiments of processing data streams, and show that our algorithm achieves the state-of- the-art results for both online and offline settings.

link (url) [BibTex]

link (url) [BibTex]


Thumb xl motion segmentation tracking clustering teaser
Motion Segmentation & Multiple Object Tracking by Correlation Co-Clustering

Keuper, M., Tang, S., Andres, B., Brox, T., Schiele, B.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018 (article)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]

2013


Thumb xl thumb
Branch&Rank for Efficient Object Detection

Lehmann, A., Gehler, P., VanGool, L.

International Journal of Computer Vision, Springer, December 2013 (article)

Abstract
Ranking hypothesis sets is a powerful concept for efficient object detection. In this work, we propose a branch&rank scheme that detects objects with often less than 100 ranking operations. This efficiency enables the use of strong and also costly classifiers like non-linear SVMs with RBF-TeX kernels. We thereby relieve an inherent limitation of branch&bound methods as bounds are often not tight enough to be effective in practice. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for rather limited function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single formulation, phrased as a structured SVM problem. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We use the VOC’07 dataset to demonstrate the algorithmic properties of branch&rank.

pdf link (url) [BibTex]

2013

pdf link (url) [BibTex]


Thumb xl tro
Extracting Postural Synergies for Robotic Grasping

Romero, J., Feix, T., Ek, C., Kjellstrom, H., Kragic, D.

Robotics, IEEE Transactions on, 29(6):1342-1352, December 2013 (article)

[BibTex]

[BibTex]


Thumb xl pic cviu13
Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey

Wang, C., Komodakis, N., Paragios, N.

Computer Vision and Image Understanding (CVIU), 117(11):1610-1627, November 2013 (article)

Abstract
In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the emergence of efficient inference methods. During the past decade, a variety of MRF models as well as inference and learning methods have been developed for addressing numerous low, mid and high-level vision problems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed significant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based models and expands the domain of solvable problems. This survey provides a compact and informative summary of the major literature in this research topic.

Publishers site pdf [BibTex]

Publishers site pdf [BibTex]


no image
Multi-robot cooperative spherical-object tracking in 3D space based on particle filters

Ahmad, A., Lima, P.

Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (article)

Abstract
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.

DOI [BibTex]

DOI [BibTex]


Thumb xl ijrr
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl teaser
Visualizing dimensionality reduction of systems biology data

Lehrmann, A. M., Huber, M., Polatkan, A. C., Pritzkau, A., Nieselt, K.

Data Mining and Knowledge Discovery, 1(27):146-165, Springer, July 2013 (article)

pdf SpRay [BibTex]

pdf SpRay [BibTex]


Thumb xl jmiv2012 mut
Unscented Kalman Filtering on Riemannian Manifolds

Soren Hauberg, Francois Lauze, Kim S. Pedersen

Journal of Mathematical Imaging and Vision, 46(1):103-120, Springer Netherlands, May 2013 (article)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


Thumb xl thumb hennigk2012 2
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


Thumb xl illuminationpami13
Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 35(2):437-449, 2013 (article)

pdf [BibTex]

pdf [BibTex]


Thumb xl training faces
Random Forests for Real Time 3D Face Analysis

Fanelli, G., Dantone, M., Gall, J., Fossati, A., van Gool, L.

International Journal of Computer Vision, 101(3):437-458, Springer, 2013 (article)

Abstract
We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinect.

data and code publisher's site pdf DOI Project Page [BibTex]

data and code publisher's site pdf DOI Project Page [BibTex]


Thumb xl humans3tracking
Markerless Motion Capture of Multiple Characters Using Multi-view Image Segmentation

Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H., Theobalt, C.

Transactions on Pattern Analysis and Machine Intelligence, 35(11):2720-2735, 2013 (article)

Abstract
Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including dancing, wrestling, and hugging.

data and video pdf DOI Project Page [BibTex]

data and video pdf DOI Project Page [BibTex]


Thumb xl perception
Viewpoint and pose in body-form adaptation

Sekunova, A., Black, M., Parkinson, L., Barton, J. J. S.

Perception, 42(2):176-186, 2013 (article)

Abstract
Faces and bodies are complex structures, perception of which can play important roles in person identification and inference of emotional state. Face representations have been explored using behavioural adaptation: in particular, studies have shown that face aftereffects show relatively broad tuning for viewpoint, consistent with origin in a high-level structural descriptor far removed from the retinal image. Our goals were to determine first, if body aftereffects also showed a degree of viewpoint invariance, and second if they also showed pose invariance, given that changes in pose create even more dramatic changes in the 2-D retinal image. We used a 3-D model of the human body to generate headless body images, whose parameters could be varied to generate different body forms, viewpoints, and poses. In the first experiment, subjects adapted to varying viewpoints of either slim or heavy bodies in a neutral stance, followed by test stimuli that were all front-facing. In the second experiment, we used the same front-facing bodies in neutral stance as test stimuli, but compared adaptation from bodies in the same neutral stance to adaptation with the same bodies in different poses. We found that body aftereffects were obtained over substantial viewpoint changes, with no significant decline in aftereffect magnitude with increasing viewpoint difference between adapting and test images. Aftereffects also showed transfer across one change in pose but not across another. We conclude that body representations may have more viewpoint invariance than faces, and demonstrate at least some transfer across pose, consistent with a high-level structural description. Keywords: aftereffect, shape, face, representation

pdf from publisher abstract pdf link (url) Project Page [BibTex]

pdf from publisher abstract pdf link (url) Project Page [BibTex]


Thumb xl 2013 ivc rkek teaser
Non-parametric hand pose estimation with object context

Romero, J., Kjellström, H., Ek, C. H., Kragic, D.

Image and Vision Computing , 31(8):555 - 564, 2013 (article)

Abstract
In the spirit of recent work on contextual recognition and estimation, we present a method for estimating the pose of human hands, employing information about the shape of the object in the hand. Despite the fact that most applications of human hand tracking involve grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the surrounding environment. Occlusion of the hand from grasped objects does in fact often pose a severe challenge to the estimation of hand pose. In the presented method, object occlusion is not only compensated for, it contributes to the pose estimation in a contextual fashion; this without an explicit model of object shape. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large database (.. entries) of hand poses with and without grasped objects. The system that operates in real time, is robust to self occlusions, object occlusions and segmentation errors, and provides full hand pose reconstruction from monocular video. Temporal consistency in hand pose is taken into account, without explicitly tracking the hand in the high-dim pose space. Experiments show the non-parametric method to outperform other state of the art regression methods, while operating at a significantly lower computational cost than comparable model-based hand tracking methods.

Publisher site pdf link (url) [BibTex]

Publisher site pdf link (url) [BibTex]

2010


Thumb xl graspimagesmall
Decoding complete reach and grasp actions from local primary motor cortex populations

(Featured in Nature’s Research Highlights (Nature, Vol 466, 29 July 2010))

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J., Black, M. J., Donoghue, J. P.

J. of Neuroscience, 39(29):9659-9669, July 2010 (article)

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]

2010

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: State of the art in image- and video-based human pose and motion estimation

Sigal, L., Black, M. J.

International Journal of Computer Vision, 87(1):1-3, March 2010 (article)

pdf from publisher [BibTex]

pdf from publisher [BibTex]


Thumb xl humanevaimagesmall2
HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion

Sigal, L., Balan, A., Black, M. J.

International Journal of Computer Vision, 87(1):4-27, Springer Netherlands, March 2010 (article)

Abstract
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HumanEva datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40,000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl ncomm fig2
Automated Home-Cage Behavioral Phenotyping of Mice

Jhuang, H., Garrote, E., Mutch, J., Poggio, T., Steele, A., Serre, T.

Nature Communications, Nature Communications, 2010 (article)

software, demo pdf [BibTex]

software, demo pdf [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 12.00.36 pm
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

Pdf [BibTex]

Pdf [BibTex]

2003


Thumb xl hedvig
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

pdf pdf from publisher code DOI [BibTex]

2003

pdf pdf from publisher code DOI [BibTex]


Thumb xl delatorreijcvteaser
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl cviu91teaser
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

pdf [BibTex]

pdf [BibTex]