Header logo is ps


2014


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

publisher link (url) [BibTex]

2014

publisher link (url) [BibTex]


Thumb xl blueman cropped2
Modeling the Human Body in 3D: Data Registration and Human Shape Representation

Tsoli, A.

Brown University, Department of Computer Science, May 2014 (phdthesis)

pdf [BibTex]

pdf [BibTex]


Thumb xl dissertation teaser scaled
Human Pose Estimation from Video and Inertial Sensors

Pons-Moll, G.

Ph.D Thesis, -, 2014 (book)

Abstract
The analysis and understanding of human movement is central to many applications such as sports science, medical diagnosis and movie production. The ability to automatically monitor human activity in security sensitive areas such as airports, lobbies or borders is of great practical importance. Furthermore, automatic pose estimation from images leverages the processing and understanding of massive digital libraries available on the Internet. We build upon a model based approach where the human shape is modelled with a surface mesh and the motion is parametrized by a kinematic chain. We then seek for the pose of the model that best explains the available observations coming from different sensors. In a first scenario, we consider a calibrated mult-iview setup in an indoor studio. To obtain very accurate results, we propose a novel tracker that combines information coming from video and a small set of Inertial Measurement Units (IMUs). We do so by locally optimizing a joint energy consisting of a term that measures the likelihood of the video data and a term for the IMU data. This is the first work to successfully combine video and IMUs information for full body pose estimation. When compared to commercial marker based systems the proposed solution is more cost efficient and less intrusive for the user. In a second scenario, we relax the assumption of an indoor studio and we tackle outdoor scenes with background clutter, illumination changes, large recording volumes and difficult motions of people interacting with objects. Again, we combine information from video and IMUs. Here we employ a particle based optimization approach that allows us to be more robust to tracking failures. To satisfy the orientation constraints imposed by the IMUs, we derive an analytic Inverse Kinematics (IK) procedure to sample from the manifold of valid poses. The generated hypothesis come from a lower dimensional manifold and therefore the computational cost can be reduced. Experiments on challenging sequences suggest the proposed tracker can be applied to capture in outdoor scenarios. Furthermore, the proposed IK sampling procedure can be used to integrate any kind of constraints derived from the environment. Finally, we consider the most challenging possible scenario: pose estimation of monocular images. Here, we argue that estimating the pose to the degree of accuracy as in an engineered environment is too ambitious with the current technology. Therefore, we propose to extract meaningful semantic information about the pose directly from image features in a discriminative fashion. In particular, we introduce posebits which are semantic pose descriptors about the geometric relationships between parts in the body. The experiments show that the intermediate step of inferring posebits from images can improve pose estimation from monocular imagery. Furthermore, posebits can be very useful as input feature for many computer vision algorithms.

pdf [BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

[BibTex]

[BibTex]

2009


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

link (url) DOI [BibTex]

2009

link (url) DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

link (url) [BibTex]

link (url) [BibTex]

1992


Thumb xl thesis
Robust Incremental Optical Flow

Black, M. J.

Yale University, Department of Computer Science, New Haven, CT, 1992, Research Report YALEU-DCS-RR-923 (phdthesis)

pdf code [BibTex]

1992

pdf code [BibTex]