Header logo is ps


2017


Thumb xl appealingavatars
Appealing Avatars from 3D Body Scans: Perceptual Effects of Stylization

Fleming, R., Mohler, B. J., Romero, J., Black, M. J., Breidt, M.

In Computer Vision, Imaging and Computer Graphics Theory and Applications: 11th International Joint Conference, VISIGRAPP 2016, Rome, Italy, February 27 – 29, 2016, Revised Selected Papers, pages: 175-196, Springer International Publishing, 2017 (inbook)

Abstract
Using styles derived from existing popular character designs, we present a novel automatic stylization technique for body shape and colour information based on a statistical 3D model of human bodies. We investigate whether such stylized body shapes result in increased perceived appeal with two different experiments: One focuses on body shape alone, the other investigates the additional role of surface colour and lighting. Our results consistently show that the most appealing avatar is a partially stylized one. Importantly, avatars with high stylization or no stylization at all were rated to have the least appeal. The inclusion of colour information and improvements to render quality had no significant effect on the overall perceived appeal of the avatars, and we observe that the body shape primarily drives the change in appeal ratings. For body scans with colour information, we found that a partially stylized avatar was perceived as most appealing.

publisher site pdf DOI [BibTex]

2017

publisher site pdf DOI [BibTex]


Thumb xl gcpr2017 nugget
Learning to Filter Object Detections

Prokudin, S., Kappler, D., Nowozin, S., Gehler, P.

In Pattern Recognition: 39th German Conference, GCPR 2017, Basel, Switzerland, September 12–15, 2017, Proceedings, pages: 52-62, Springer International Publishing, Cham, 2017 (inbook)

Abstract
Most object detection systems consist of three stages. First, a set of individual hypotheses for object locations is generated using a proposal generating algorithm. Second, a classifier scores every generated hypothesis independently to obtain a multi-class prediction. Finally, all scored hypotheses are filtered via a non-differentiable and decoupled non-maximum suppression (NMS) post-processing step. In this paper, we propose a filtering network (FNet), a method which replaces NMS with a differentiable neural network that allows joint reasoning and re-scoring of the generated set of hypotheses per image. This formulation enables end-to-end training of the full object detection pipeline. First, we demonstrate that FNet, a feed-forward network architecture, is able to mimic NMS decisions, despite the sequential nature of NMS. We further analyze NMS failures and propose a loss formulation that is better aligned with the mean average precision (mAP) evaluation metric. We evaluate FNet on several standard detection datasets. Results surpass standard NMS on highly occluded settings of a synthetic overlapping MNIST dataset and show competitive behavior on PascalVOC2007 and KITTI detection benchmarks.

Paper link (url) DOI Project Page [BibTex]

Paper link (url) DOI Project Page [BibTex]


Thumb xl auroteaser
Decentralized Simultaneous Multi-target Exploration using a Connected Network of Multiple Robots

Nestmeyer, T., Robuffo Giordano, P., Bülthoff, H. H., Franchi, A.

In pages: 989-1011, Autonomous Robots, 2017 (incollection)

[BibTex]

[BibTex]

2014


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

publisher link (url) [BibTex]

2014

publisher link (url) [BibTex]


Thumb xl dissertation teaser scaled
Human Pose Estimation from Video and Inertial Sensors

Pons-Moll, G.

Ph.D Thesis, -, 2014 (book)

Abstract
The analysis and understanding of human movement is central to many applications such as sports science, medical diagnosis and movie production. The ability to automatically monitor human activity in security sensitive areas such as airports, lobbies or borders is of great practical importance. Furthermore, automatic pose estimation from images leverages the processing and understanding of massive digital libraries available on the Internet. We build upon a model based approach where the human shape is modelled with a surface mesh and the motion is parametrized by a kinematic chain. We then seek for the pose of the model that best explains the available observations coming from different sensors. In a first scenario, we consider a calibrated mult-iview setup in an indoor studio. To obtain very accurate results, we propose a novel tracker that combines information coming from video and a small set of Inertial Measurement Units (IMUs). We do so by locally optimizing a joint energy consisting of a term that measures the likelihood of the video data and a term for the IMU data. This is the first work to successfully combine video and IMUs information for full body pose estimation. When compared to commercial marker based systems the proposed solution is more cost efficient and less intrusive for the user. In a second scenario, we relax the assumption of an indoor studio and we tackle outdoor scenes with background clutter, illumination changes, large recording volumes and difficult motions of people interacting with objects. Again, we combine information from video and IMUs. Here we employ a particle based optimization approach that allows us to be more robust to tracking failures. To satisfy the orientation constraints imposed by the IMUs, we derive an analytic Inverse Kinematics (IK) procedure to sample from the manifold of valid poses. The generated hypothesis come from a lower dimensional manifold and therefore the computational cost can be reduced. Experiments on challenging sequences suggest the proposed tracker can be applied to capture in outdoor scenarios. Furthermore, the proposed IK sampling procedure can be used to integrate any kind of constraints derived from the environment. Finally, we consider the most challenging possible scenario: pose estimation of monocular images. Here, we argue that estimating the pose to the degree of accuracy as in an engineered environment is too ambitious with the current technology. Therefore, we propose to extract meaningful semantic information about the pose directly from image features in a discriminative fashion. In particular, we introduce posebits which are semantic pose descriptors about the geometric relationships between parts in the body. The experiments show that the intermediate step of inferring posebits from images can improve pose estimation from monocular imagery. Furthermore, posebits can be very useful as input feature for many computer vision algorithms.

pdf [BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

[BibTex]

[BibTex]

1997


Thumb xl bildschirmfoto 2013 01 15 um 11.00.33
Recognizing human motion using parameterized models of optical flow

Black, M. J., Yacoob, Y., Ju, X. S.

In Motion-Based Recognition, pages: 245-269, (Editors: Mubarak Shah and Ramesh Jain,), Kluwer Academic Publishers, Boston, MA, 1997 (incollection)

pdf [BibTex]

1997

pdf [BibTex]