Header logo is ps


2019


AirCap -- Aerial Outdoor Motion Capture
AirCap – Aerial Outdoor Motion Capture

Ahmad, A., Price, E., Tallamraju, R., Saini, N., Lawless, G., Ludwig, R., Martinovic, I., Bülthoff, H. H., Black, M. J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Workshop on Aerial Swarms, November 2019 (misc)

Abstract
This paper presents an overview of the Grassroots project Aerial Outdoor Motion Capture (AirCap) running at the Max Planck Institute for Intelligent Systems. AirCap's goal is to achieve markerless, unconstrained, human motion capture (mocap) in unknown and unstructured outdoor environments. To that end, we have developed an autonomous flying motion capture system using a team of aerial vehicles (MAVs) with only on-board, monocular RGB cameras. We have conducted several real robot experiments involving up to 3 aerial vehicles autonomously tracking and following a person in several challenging scenarios using our approach of active cooperative perception developed in AirCap. Using the images captured by these robots during the experiments, we have demonstrated a successful offline body pose and shape estimation with sufficiently high accuracy. Overall, we have demonstrated the first fully autonomous flying motion capture system involving multiple robots for outdoor scenarios.

Talk slides Project Page Project Page [BibTex]

2019

Talk slides Project Page Project Page [BibTex]


Method for providing a three dimensional body model
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

September 2019, U.S.~Patent 10,417,818 (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

MoSh Project pdf [BibTex]


Perceiving Systems (2016-2018)
Perceiving Systems (2016-2018)
Scientific Advisory Board Report, 2019 (misc)

pdf [BibTex]

pdf [BibTex]

2018


Method and Apparatus for Estimating Body Shape
Method and Apparatus for Estimating Body Shape

Black, M. J., Balan, A., Weiss, A., Sigal, L., Loper, M., St Clair, T.

June 2018, U.S.~Patent 10,002,460 (misc)

Abstract
A system and method of estimating the body shape of an individual from input data such as images or range maps. The body may appear in one or more poses captured at different times and a consistent body shape is computed for all poses. The body may appear in minimal tight-fitting clothing or in normal clothing wherein the described method produces an estimate of the body shape under the clothing. Clothed or bare regions of the body are detected via image classification and the fitting method is adapted to treat each region differently. Body shapes are represented parametrically and are matched to other bodies based on shape similarity and other features. Standard measurements are extracted using parametric or non-parametric functions of body shape. The system components support many applications in body scanning, advertising, social networking, collaborative filtering and Internet clothing shopping.

Google Patents Project Page [BibTex]

2018

Google Patents Project Page [BibTex]


Co-Registration -- Simultaneous Alignment and Modeling of Articulated {3D} Shapes
Co-Registration – Simultaneous Alignment and Modeling of Articulated 3D Shapes

Black, M., Hirshberg, D., Loper, M., Rachlin, E., Weiss, A.

Febuary 2018, U.S.~Patent 9,898,848 (misc)

Abstract
Present application refers to a method, a model generation unit and a computer program (product) for generating trained models (M) of moving persons, based on physically measured person scan data (S). The approach is based on a common template (T) for the respective person and on the measured person scan data (S) in different shapes and different poses. Scan data are measured with a 3D laser scanner. A generic personal model is used for co-registering a set of person scan data (S) aligning the template (T) to the set of person scans (S) while simultaneously training the generic personal model to become a trained person model (M) by constraining the generic person model to be scan-specific, person-specific and pose-specific and providing the trained model (M), based on the co registering of the measured object scan data (S).

text [BibTex]

2016


Skinned multi-person linear model
Skinned multi-person linear model

Black, M.J., Loper, M., Mahmood, N., Pons-Moll, G., Romero, J.

December 2016, Application PCT/EP2016/064610 (misc)

Abstract
The invention comprises a learned model of human body shape and pose dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity- dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. The invention quantitatively evaluates variants of SMPL using linear or dual- quaternion blend skinning and show that both are more accurate than a Blend SCAPE model trained on the same data. In a further embodiment, the invention realistically models dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

Google Patents [BibTex]

2016

Google Patents [BibTex]


Perceiving Systems (2011-2015)
Perceiving Systems (2011-2015)
Scientific Advisory Board Report, 2016 (misc)

pdf [BibTex]

pdf [BibTex]

2011


Benchmark datasets for pose estimation and tracking
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

publisher's site Project Page [BibTex]

2011

publisher's site Project Page [BibTex]


Fields of experts
Fields of experts

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 297-310, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
Fields of Experts are high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. The clique potentials are modeled as a Product of Experts using nonlinear functions of many linear filter responses. In contrast to previous MRF approaches, all parameters, including the linear filters themselves, are learned from training data. A Field of Experts (FoE) provides a generic, expressive image prior that can capture the statistics of natural scenes, and can be used for a variety of machine vision tasks. The capabilities of FoEs are demonstrated with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the FoE model is trained on a generic image database and is not tuned toward a specific application, the results compete with specialized techniques.

publisher site [BibTex]

publisher site [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

publisher site [BibTex]

publisher site [BibTex]


Model-Based Pose Estimation
Model-Based Pose Estimation

Pons-Moll, G., Rosenhahn, B.

In Visual Analysis of Humans: Looking at People, pages: 139-170, 9, (Editors: T. Moeslund, A. Hilton, V. Krueger, L. Sigal), Springer, 2011 (inbook)

book page pdf [BibTex]

book page pdf [BibTex]

2002


Bayesian Inference of Visual Motion Boundaries
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

2002

pdf [BibTex]

1993


Mixture models for optical flow computation
Mixture models for optical flow computation

Jepson, A., Black, M.

In Partitioning Data Sets, DIMACS Workshop, pages: 271-286, (Editors: Ingemar Cox, Pierre Hansen, and Bela Julesz), AMS Pub, Providence, RI., April 1993 (incollection)

pdf [BibTex]

1993

pdf [BibTex]