Header logo is ps


2016


Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

pdf [BibTex]

2011


no image
ISocRob-MSL 2011 Team Description Paper for Middle Sized League

Messias, J., Ahmad, A., Reis, J., Sousa, J., Lima, P.

15th Annual RoboCup International Symposium 2011, July 2011 (techreport)

Abstract
This paper describes the status of the ISocRob MSL robotic soccer team as required by the RoboCup 2011 qualification procedures. The most relevant technical and scientifical developments carried out by the team, since its last participation in the RoboCup MSL competitions, are here detailed. These include cooperative localization, cooperative object tracking, planning under uncertainty, obstacle detection and improvements to self-localization.

link (url) [BibTex]

2011

link (url) [BibTex]


Benchmark datasets for pose estimation and tracking
Benchmark datasets for pose estimation and tracking

Andriluka, M., Sigal, L., Black, M. J.

In Visual Analysis of Humans: Looking at People, pages: 253-274, (Editors: Moesland and Hilton and Kr"uger and Sigal), Springer-Verlag, London, 2011 (incollection)

publisher's site Project Page [BibTex]

publisher's site Project Page [BibTex]


Fields of experts
Fields of experts

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 297-310, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
Fields of Experts are high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. The clique potentials are modeled as a Product of Experts using nonlinear functions of many linear filter responses. In contrast to previous MRF approaches, all parameters, including the linear filters themselves, are learned from training data. A Field of Experts (FoE) provides a generic, expressive image prior that can capture the statistics of natural scenes, and can be used for a variety of machine vision tasks. The capabilities of FoEs are demonstrated with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the FoE model is trained on a generic image database and is not tuned toward a specific application, the results compete with specialized techniques.

publisher site [BibTex]

publisher site [BibTex]


Dorsal Stream: From Algorithm to Neuroscience
Dorsal Stream: From Algorithm to Neuroscience

Jhuang, H.

PhD Thesis, MIT, 2011 (techreport)

pdf [BibTex]


Steerable random fields for image restoration and inpainting
Steerable random fields for image restoration and inpainting

Roth, S., Black, M. J.

In Markov Random Fields for Vision and Image Processing, pages: 377-387, (Editors: Blake, A. and Kohli, P. and Rother, C.), MIT Press, 2011 (incollection)

Abstract
This chapter introduces the concept of a Steerable Random Field (SRF). In contrast to traditional Markov random field (MRF) models in low-level vision, the random field potentials of a SRF are defined in terms of filter responses that are steered to the local image structure. This steering uses the structure tensor to obtain derivative responses that are either aligned with, or orthogonal to, the predominant local image structure. Analysis of the statistics of these steered filter responses in natural images leads to the model proposed here. Clique potentials are defined over steered filter responses using a Gaussian scale mixture model and are learned from training data. The SRF model connects random fields with anisotropic regularization and provides a statistical motivation for the latter. Steering the random field to the local image structure improves image denoising and inpainting performance compared with traditional pairwise MRFs.

publisher site [BibTex]

publisher site [BibTex]


Spatial Models of Human Motion
Spatial Models of Human Motion

Soren Hauberg

University of Copenhagen, 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


Model-Based Pose Estimation
Model-Based Pose Estimation

Pons-Moll, G., Rosenhahn, B.

In Visual Analysis of Humans: Looking at People, pages: 139-170, 9, (Editors: T. Moeslund, A. Hilton, V. Krueger, L. Sigal), Springer, 2011 (inbook)

book page pdf [BibTex]

book page pdf [BibTex]

2010


ImageFlow: Streaming Image Search
ImageFlow: Streaming Image Search

Jampani, V., Ramos, G., Drucker, S.

MSR-TR-2010-148, Microsoft Research, Redmond, 2010 (techreport)

Abstract
Traditional grid and list representations of image search results are the dominant interaction paradigms that users face on a daily basis, yet it is unclear that such paradigms are well-suited for experiences where the user‟s task is to browse images for leisure, to discover new information or to seek particular images to represent ideas. We introduce ImageFlow, a novel image search user interface that ex-plores a different alternative to the traditional presentation of image search results. ImageFlow presents image results on a canvas where we map semantic features (e.g., rele-vance, related queries) to the canvas‟ spatial dimensions (e.g., x, y, z) in a way that allows for several levels of en-gagement – from passively viewing a stream of images, to seamlessly navigating through the semantic space and ac-tively collecting images for sharing and reuse. We have implemented our system as a fully functioning prototype, and we report on promising, preliminary usage results.

url pdf link (url) [BibTex]

2010

url pdf link (url) [BibTex]

2006


Implicit Wiener Series, Part II: Regularised estimation
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]

2006


{HumanEva}: Synchronized video and motion capture dataset for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

pdf abstract [BibTex]

pdf abstract [BibTex]


Products of ``Edge-perts''
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

pdf [BibTex]

1999


Artscience Sciencart
Artscience Sciencart

Black, M. J., Levy, D., PamelaZ,

In Art and Innovation: The Xerox PARC Artist-in-Residence Program, pages: 244-300, (Editors: Harris, C.), MIT-Press, 1999 (incollection)

Abstract
One of the effects of the PARC Artist In Residence (PAIR) program has been to expose the strong connections between scientists and artists. Both do what they do because they need to do it. They are often called upon to justify their work in order to be allowed to continue to do it. They need to justify it to funders, to sponsoring institutions, corporations, the government, the public. They publish papers, teach workshops, and write grants touting the educational or health benefits of what they do. All of these things are to some extent valid, but the fact of the matter is: artists and scientists do their work because they are driven to do it. They need to explore and create.

This chapter attempts to give a flavor of one multi-way "PAIRing" between performance artist PamelaZ and two PARC researchers, Michael Black and David Levy. The three of us paired up because we found each other interesting. We chose each other. While most artists in the program are paired with a single researcher Pamela jokingly calls herself a bigamist for choosing two PAIR "husbands" with different backgrounds and interests.

There are no "rules" to the PAIR program; no one told us what to do with our time. Despite this we all had a sense that we needed to produce something tangible during Pamela's year-long residency. In fact, Pamela kept extending her residency because she did not feel as though we had actually made anything concrete. The interesting thing was that all along we were having great conversations, some of which Pamela recorded. What we did not see at the time was that it was these conversations between artists and scientists that are at the heart of the PAIR program and that these conversations were changing the way we thought about our own work and the relationships between science and art.

To give these conversations their due, and to allow the reader into our PAIR interactions, we include two of our many conversations in this chapter.

[BibTex]

1999

[BibTex]

1997


Recognizing human motion using parameterized models of optical flow
Recognizing human motion using parameterized models of optical flow

Black, M. J., Yacoob, Y., Ju, X. S.

In Motion-Based Recognition, pages: 245-269, (Editors: Mubarak Shah and Ramesh Jain,), Kluwer Academic Publishers, Boston, MA, 1997 (incollection)

pdf [BibTex]

1997

pdf [BibTex]