Header logo is ps


2019


Thumb xl website teaser
Resolving 3D Human Pose Ambiguities with 3D Scene Constraints

Hassan, M., Choutas, V., Tzionas, D., Black, M. J.

In International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
To understand and analyze human behavior, we need to capture humans moving in, and interacting with, the world. Most existing methods perform 3D human pose estimation without explicitly considering the scene. We observe however that the world constrains the body and vice-versa. To motivate this, we show that current 3D human pose estimation methods produce results that are not consistent with the 3D scene. Our key contribution is to exploit static 3D scene structure to better estimate human pose from monocular images. The method enforces Proximal Relationships with Object eXclusion and is called PROX. To test this, we collect a new dataset composed of 12 different 3D scenes and RGB sequences of 20 subjects moving in and interacting with the scenes. We represent human pose using the 3D human body model SMPL-X and extend SMPLify-X to estimate body pose using scene constraints. We make use of the 3D scene information by formulating two main constraints. The interpenetration constraint penalizes intersection between the body model and the surrounding 3D scene. The contact constraint encourages specific parts of the body to be in contact with scene surfaces if they are close enough in distance and orientation. For quantitative evaluation we capture a separate dataset with 180 RGB frames in which the ground-truth body pose is estimated using a motion-capture system. We show quantitatively that introducing scene constraints significantly reduces 3D joint error and vertex error. Our code and data are available for research at https://prox.is.tue.mpg.de.

pdf link (url) [BibTex]

2019

pdf link (url) [BibTex]


Thumb xl aircap cover image
Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles

Saini, N., Price, E., Tallamraju, R., Enficiaud, R., Ludwig, R., Martinović, I., Ahmad, A., Black, M.

International Conference on Computer Vision, October 2019 (conference) Accepted

Abstract
Capturing human motion in natural scenarios means moving motion capture out of the lab and into the wild. Typical approaches rely on fixed, calibrated, cameras and reflective markers on the body, significantly limiting the motions that can be captured. To make motion capture truly unconstrained, we describe the first fully autonomous outdoor capture system based on flying vehicles. We use multiple micro-aerial-vehicles(MAVs), each equipped with a monocular RGB camera, an IMU, and a GPS receiver module. These detect the person, optimize their position, and localize themselves approximately. We then develop a markerless motion capture method that is suitable for this challenging scenario with a distant subject, viewed from above, with approximately calibrated and moving cameras. We combine multiple state-of-the-art 2D joint detectors with a 3D human body model and a powerful prior on human pose. We jointly optimize for 3D body pose and camera pose to robustly fit the 2D measurements. To our knowledge, this is the first successful demonstration of outdoor, full-body, markerless motion capture from autonomous flying vehicles.

Project Page [BibTex]


Thumb xl lala2
Learning to Train with Synthetic Humans

Hoffmann, D. T., Tzionas, D., Black, M. J., Tang, S.

In German Conference on Pattern Recognition (GCPR), September 2019 (inproceedings)

Abstract
Neural networks need big annotated datasets for training. However, manual annotation can be too expensive or even unfeasible for certain tasks, like multi-person 2D pose estimation with severe occlusions. A remedy for this is synthetic data with perfect ground truth. Here we explore two variations of synthetic data for this challenging problem; a dataset with purely synthetic humans, as well as a real dataset augmented with synthetic humans. We then study which approach better generalizes to real data, as well as the influence of virtual humans in the training loss. We observe that not all synthetic samples are equally informative for training, while the informative samples are different for each training stage. To exploit this observation, we employ an adversarial student-teacher framework; the teacher improves the student by providing the hardest samples for its current state as a challenge. Experiments show that this student-teacher framework outperforms all our baselines.

pdf suppl link (url) [BibTex]

pdf suppl link (url) [BibTex]


Thumb xl cover
Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems

Tallamraju, R., Salunkhe, D., Rajappa, S., Ahmad, A., Karlapalem, K., Shah, S. V.

15th IEEE International Conference on Automation Science and Engineering, IEEE, August 2019 (conference) Accepted

[BibTex]

[BibTex]


Thumb xl teaser results
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
We address the unsupervised learning of several interconnected problems in low-level vision: single view depth prediction, camera motion estimation, optical flow, and segmentation of a video into the static scene and moving regions. Our key insight is that these four fundamental vision problems are coupled through geometric constraints. Consequently, learning to solve them together simplifies the problem because the solutions can reinforce each other. We go beyond previous work by exploiting geometry more explicitly and segmenting the scene into static and moving regions. To that end, we introduce Competitive Collaboration, a framework that facilitates the coordinated training of multiple specialized neural networks to solve complex problems. Competitive Collaboration works much like expectation-maximization, but with neural networks that act as both competitors to explain pixels that correspond to static or moving regions, and as collaborators through a moderator that assigns pixels to be either static or independently moving. Our novel method integrates all these problems in a common framework and simultaneously reasons about the segmentation of the scene into moving objects and the static background, the camera motion, depth of the static scene structure, and the optical flow of moving objects. Our model is trained without any supervision and achieves state-of-the-art performance among joint unsupervised methods on all sub-problems.

Paper link (url) Project Page Project Page [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


Thumb xl ringnet
Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Sanyal, S., Bolkart, T., Feng, H., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
The estimation of 3D face shape from a single image must be robust to variations in lighting, head pose, expression, facial hair, makeup, and occlusions. Robustness requires a large training set of in-the-wild images, which by construction, lack ground truth 3D shape. To train a network without any 2D-to-3D supervision, we present RingNet, which learns to compute 3D face shape from a single image. Our key observation is that an individual’s face shape is constant across images, regardless of expression, pose, lighting, etc. RingNet leverages multiple images of a person and automatically detected 2D face features. It uses a novel loss that encourages the face shape to be similar when the identity is the same and different for different people. We achieve invariance to expression by representing the face using the FLAME model. Once trained, our method takes a single image and outputs the parameters of FLAME, which can be readily animated. Additionally we create a new database of faces “not quite in-the-wild” (NoW) with 3D head scans and high-resolution images of the subjects in a wide variety of conditions. We evaluate publicly available methods and find that RingNet is more accurate than methods that use 3D supervision. The dataset, model, and results are available for research purposes.

code pdf preprint link (url) Project Page [BibTex]


Thumb xl obman new
Learning Joint Reconstruction of Hands and Manipulated Objects

Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Estimating hand-object manipulations is essential for interpreting and imitating human actions. Previous work has made significant progress towards reconstruction of hand poses and object shapes in isolation. Yet, reconstructing hands and objects during manipulation is a more challenging task due to significant occlusions of both the hand and object. While presenting challenges, manipulations may also simplify the problem since the physics of contact restricts the space of valid hand-object configurations. For example, during manipulation, the hand and object should be in contact but not interpenetrate. In this work, we regularize the joint reconstruction of hands and objects with manipulation constraints. We present an end-to-end learnable model that exploits a novel contact loss that favors physically plausible hand-object constellations. Our approach improves grasp quality metrics over baselines, using RGB images as input. To train and evaluate the model, we also propose a new large-scale synthetic dataset, ObMan, with hand-object manipulations. We demonstrate the transferability of ObMan-trained models to real data.

pdf suppl poster link (url) Project Page Project Page [BibTex]

pdf suppl poster link (url) Project Page Project Page [BibTex]


Thumb xl smplex
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A. A., Tzionas, D., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8x over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.

video code pdf suppl poster link (url) Project Page [BibTex]


Thumb xl voca
Capture, Learning, and Synthesis of 3D Speaking Styles

Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input—even speech in languages other than English—and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.

code Project Page video paper [BibTex]

code Project Page video paper [BibTex]


Thumb xl model
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders

Ghosh, P., Losalka, A., Black, M. J.

In Proc. AAAI, 2019 (inproceedings)

Abstract
Susceptibility of deep neural networks to adversarial attacks poses a major theoretical and practical challenge. All efforts to harden classifiers against such attacks have seen limited success till now. Two distinct categories of samples against which deep neural networks are vulnerable, ``adversarial samples" and ``fooling samples", have been tackled separately so far due to the difficulty posed when considered together. In this work, we show how one can defend against them both under a unified framework. Our model has the form of a variational autoencoder with a Gaussian mixture prior on the latent variable, such that each mixture component corresponds to a single class. We show how selective classification can be performed using this model, thereby causing the adversarial objective to entail a conflict. The proposed method leads to the rejection of adversarial samples instead of misclassification, while maintaining high precision and recall on test data. It also inherently provides a way of learning a selective classifier in a semi-supervised scenario, which can similarly resist adversarial attacks. We further show how one can reclassify the detected adversarial samples by iterative optimization.

link (url) Project Page [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]

2013


Thumb xl iccv2013 siyu
Learning People Detectors for Tracking in Crowded Scenes

Tang, S., Andriluka, M., Milan, A., Schindler, K., Roth, S., Schiele, B.

In 2013 IEEE International Conference on Computer Vision, pages: 1049-1056, IEEE, December 2013 (inproceedings)

PDF DOI [BibTex]

2013

PDF DOI [BibTex]


Thumb xl thumb
Strong Appearance and Expressive Spatial Models for Human Pose Estimation

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In International Conference on Computer Vision (ICCV), pages: 3487 - 3494 , IEEE, December 2013 (inproceedings)

Abstract
Typical approaches to articulated pose estimation combine spatial modelling of the human body with appearance modelling of body parts. This paper aims to push the state-of-the-art in articulated pose estimation in two ways. First we explore various types of appearance representations aiming to substantially improve the body part hypotheses. And second, we draw on and combine several recently proposed powerful ideas such as more flexible spatial models as well as image-conditioned spatial models. In a series of experiments we draw several important conclusions: (1) we show that the proposed appearance representations are complementary; (2) we demonstrate that even a basic tree-structure spatial human body model achieves state-of-the-art performance when augmented with the proper appearance representation; and (3) we show that the combination of the best performing appearance model with a flexible image-conditioned spatial model achieves the best result, significantly improving over the state of the art, on the "Leeds Sports Poses'' and "Parse'' benchmarks.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl screenshot area 2015 07 27 004304
Methods and Applications for Distance Based ANN Training

Lassner, C., Lienhart, R.

In IEEE International Conference on Machine Learning and Applications (ICMLA), December 2013 (inproceedings)

Abstract
Feature learning has the aim to take away the hassle of hand-designing features for machine learning tasks. Since the feature design process is tedious and requires a lot of experience, an automated solution is of great interest. However, an important problem in this field is that usually no objective values are available to fit a feature learning function to. Artificial Neural Networks are a sufficiently flexible tool for function approximation to be able to avoid this problem. We show how the error function of an ANN can be modified such that it works solely with objective distances instead of objective values. We derive the adjusted rules for backpropagation through networks with arbitrary depths and include practical considera- tions that must be taken into account to apply difference based learning successfully. On all three benchmark datasets we use, linear SVMs trained on automatically learned ANN features outperform RBF kernel SVMs trained on the raw data. This can be achieved in a feature space with up to only a tenth of dimensions of the number of original data dimensions. We conclude our work with two experiments on distance based ANN training in two further fields: data visualization and outlier detection.

pdf [BibTex]

pdf [BibTex]


Thumb xl zhang
Understanding High-Level Semantics by Modeling Traffic Patterns

Zhang, H., Geiger, A., Urtasun, R.

In International Conference on Computer Vision, pages: 3056-3063, Sydney, Australia, December 2013 (inproceedings)

Abstract
In this paper, we are interested in understanding the semantics of outdoor scenes in the context of autonomous driving. Towards this goal, we propose a generative model of 3D urban scenes which is able to reason not only about the geometry and objects present in the scene, but also about the high-level semantics in the form of traffic patterns. We found that a small number of patterns is sufficient to model the vast majority of traffic scenes and show how these patterns can be learned. As evidenced by our experiments, this high-level reasoning significantly improves the overall scene estimation as well as the vehicle-to-lane association when compared to state-of-the-art approaches. All data and code will be made available upon publication.

pdf [BibTex]

pdf [BibTex]


Thumb xl thumb
A Non-parametric Bayesian Network Prior of Human Pose

Lehrmann, A. M., Gehler, P., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision (ICCV), pages: 1281-1288, December 2013 (inproceedings)

Abstract
Having a sensible prior of human pose is a vital ingredient for many computer vision applications, including tracking and pose estimation. While the application of global non-parametric approaches and parametric models has led to some success, finding the right balance in terms of flexibility and tractability, as well as estimating model parameters from data has turned out to be challenging. In this work, we introduce a sparse Bayesian network model of human pose that is non-parametric with respect to the estimation of both its graph structure and its local distributions. We describe an efficient sampling scheme for our model and show its tractability for the computation of exact log-likelihoods. We empirically validate our approach on the Human 3.6M dataset and demonstrate superior performance to global models and parametric networks. We further illustrate our model's ability to represent and compose poses not present in the training set (compositionality) and describe a speed-accuracy trade-off that allows realtime scoring of poses.

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]


Thumb xl jhuang
Towards understanding action recognition

Jhuang, H., Gall, J., Zuffi, S., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3192-3199, IEEE, Sydney, Australia, December 2013 (inproceedings)

Abstract
Although action recognition in videos is widely studied, current methods often fail on real-world datasets. Many recent approaches improve accuracy and robustness to cope with challenging video sequences, but it is often unclear what affects the results most. This paper attempts to provide insights based on a systematic performance evaluation using thoroughly-annotated data of human actions. We annotate human Joints for the HMDB dataset (J-HMDB). This annotation can be used to derive ground truth optical flow and segmentation. We evaluate current methods using this dataset and systematically replace the output of various algorithms with ground truth. This enables us to discover what is important – for example, should we work on improving flow algorithms, estimating human bounding boxes, or enabling pose estimation? In summary, we find that highlevel pose features greatly outperform low/mid level features; in particular, pose over time is critical, but current pose estimation algorithms are not yet reliable enough to provide this information. We also find that the accuracy of a top-performing action recognition framework can be greatly increased by refining the underlying low/mid level features; this suggests it is important to improve optical flow and human detection algorithms. Our analysis and JHMDB dataset should facilitate a deeper understanding of action recognition algorithms.

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]

Website Errata Poster Paper Slides DOI Project Page Project Page Project Page [BibTex]


Thumb xl embs2013
Mixing Decoded Cursor Velocity and Position from an Offline Kalman Filter Improves Cursor Control in People with Tetraplegia

Homer, M., Harrison, M., Black, M. J., Perge, J., Cash, S., Friehs, G., Hochberg, L.

In 6th International IEEE EMBS Conference on Neural Engineering, pages: 715-718, San Diego, November 2013 (inproceedings)

Abstract
Kalman filtering is a common method to decode neural signals from the motor cortex. In clinical research investigating the use of intracortical brain computer interfaces (iBCIs), the technique enabled people with tetraplegia to control assistive devices such as a computer or robotic arm directly from their neural activity. For reaching movements, the Kalman filter typically estimates the instantaneous endpoint velocity of the control device. Here, we analyzed attempted arm/hand movements by people with tetraplegia to control a cursor on a computer screen to reach several circular targets. A standard velocity Kalman filter is enhanced to additionally decode for the cursor’s position. We then mix decoded velocity and position to generate cursor movement commands. We analyzed data, offline, from two participants across six sessions. Root mean squared error between the actual and estimated cursor trajectory improved by 12.2 ±10.5% (pairwise t-test, p<0.05) as compared to a standard velocity Kalman filter. The findings suggest that simultaneously decoding for intended velocity and position and using them both to generate movement commands can improve the performance of iBCIs.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


no image
Multi-Robot Cooperative Object Tracking Based on Particle Filters

Ahmad, A., Lima, P.

In Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (inproceedings)

Abstract
This article presents a cooperative approach for tracking a moving object by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Thumb xl bmvc teaser
Distribution Fields with Adaptive Kernels for Large Displacement Image Alignment

Mears, B., Sevilla-Lara, L., Learned-Miller, E.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

Abstract
While region-based image alignment algorithms that use gradient descent can achieve sub-pixel accuracy when they converge, their convergence depends on the smoothness of the image intensity values. Image smoothness is often enforced through the use of multiscale approaches in which images are smoothed and downsampled. Yet, these approaches typically use fixed smoothing parameters which may be appropriate for some images but not for others. Even for a particular image, the optimal smoothing parameters may depend on the magnitude of the transformation. When the transformation is large, the image should be smoothed more than when the transformation is small. Further, with gradient-based approaches, the optimal smoothing parameters may change with each iteration as the algorithm proceeds towards convergence. We address convergence issues related to the choice of smoothing parameters by deriving a Gauss-Newton gradient descent algorithm based on distribution fields (DFs) and proposing a method to dynamically select smoothing parameters at each iteration. DF and DF-like representations have previously been used in the context of tracking. In this work we incorporate DFs into a full affine model for region-based alignment and simultaneously search over parameterized sets of geometric and photometric transforms. We use a probabilistic interpretation of DFs to select smoothing parameters at each step in the optimization and show that this results in improved convergence rates.

pdf code [BibTex]

pdf code [BibTex]


Thumb xl teaser mrg
Metric Regression Forests for Human Pose Estimation

(Best Science Paper Award)

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

In British Machine Vision Conference (BMVC) , BMVA Press, September 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl thumb
Poselet conditioned pictorial structures

Pishchulin, L., Andriluka, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pages: 588 - 595, IEEE, Portland, OR, June 2013 (inproceedings)

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl thumb
Occlusion Patterns for Object Class Detection

Pepik, B., Stark, M., Gehler, P., Schiele, B.

In IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Portland, OR, June 2013 (inproceedings)

Abstract
Despite the success of recent object class recognition systems, the long-standing problem of partial occlusion re- mains a major challenge, and a principled solution is yet to be found. In this paper we leave the beaten path of meth- ods that treat occlusion as just another source of noise – instead, we include the occluder itself into the modelling, by mining distinctive, reoccurring occlusion patterns from annotated training data. These patterns are then used as training data for dedicated detectors of varying sophistica- tion. In particular, we evaluate and compare models that range from standard object class detectors to hierarchical, part-based representations of occluder/occludee pairs. In an extensive evaluation we derive insights that can aid fur- ther developments in tackling the occlusion challenge.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl lost
Lost! Leveraging the Crowd for Probabilistic Visual Self-Localization

(CVPR13 Best Paper Runner-Up)

Brubaker, M. A., Geiger, A., Urtasun, R.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2013), pages: 3057-3064, IEEE, Portland, OR, June 2013 (inproceedings)

Abstract
In this paper we propose an affordable solution to self- localization, which utilizes visual odometry and road maps as the only inputs. To this end, we present a probabilis- tic model as well as an efficient approximate inference al- gorithm, which is able to utilize distributed computation to meet the real-time requirements of autonomous systems. Because of the probabilistic nature of the model we are able to cope with uncertainty due to noisy visual odometry and inherent ambiguities in the map ( e.g ., in a Manhattan world). By exploiting freely available, community devel- oped maps and visual odometry measurements, we are able to localize a vehicle up to 3m after only a few seconds of driving on maps which contain more than 2,150km of driv- able roads.

pdf supplementary project page [BibTex]

pdf supplementary project page [BibTex]


Thumb xl poseregression
Human Pose Estimation using Body Parts Dependent Joint Regressors

Dantone, M., Gall, J., Leistner, C., van Gool, L.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3041-3048, IEEE, Portland, OR, USA, June 2013 (inproceedings)

Abstract
In this work, we address the problem of estimating 2d human pose from still images. Recent methods that rely on discriminatively trained deformable parts organized in a tree model have shown to be very successful in solving this task. Within such a pictorial structure framework, we address the problem of obtaining good part templates by proposing novel, non-linear joint regressors. In particular, we employ two-layered random forests as joint regressors. The first layer acts as a discriminative, independent body part classifier. The second layer takes the estimated class distributions of the first one into account and is thereby able to predict joint locations by modeling the interdependence and co-occurrence of the parts. This results in a pose estimation framework that takes dependencies between body parts already for joint localization into account and is thus able to circumvent typical ambiguities of tree structures, such as for legs and arms. In the experiments, we demonstrate that our body parts dependent joint regressors achieve a higher joint localization accuracy than tree-based state-of-the-art methods.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl deqingcvpr13b
A fully-connected layered model of foreground and background flow

Sun, D., Wulff, J., Sudderth, E., Pfister, H., Black, M.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR 2013), pages: 2451-2458, Portland, OR, June 2013 (inproceedings)

Abstract
Layered models allow scene segmentation and motion estimation to be formulated together and to inform one another. Traditional layered motion methods, however, employ fairly weak models of scene structure, relying on locally connected Ising/Potts models which have limited ability to capture long-range correlations in natural scenes. To address this, we formulate a fully-connected layered model that enables global reasoning about the complicated segmentations of real objects. Optimization with fully-connected graphical models is challenging, and our inference algorithm leverages recent work on efficient mean field updates for fully-connected conditional random fields. These methods can be implemented efficiently using high-dimensional Gaussian filtering. We combine these ideas with a layered flow model, and find that the long-range connections greatly improve segmentation into figure-ground layers when compared with locally connected MRF models. Experiments on several benchmark datasets show that the method can recover fine structures and large occlusion regions, with good flow accuracy and much lower computational cost than previous locally-connected layered models.

pdf Supplemental Material Project Page Project Page [BibTex]

pdf Supplemental Material Project Page Project Page [BibTex]


no image
Perception-driven multi-robot formation control

Ahmad, A., Nascimento, T., Conceicao, A., Moreira, A., Lima, P.

In pages: 1851-1856, IEEE, May 2013 (inproceedings)

Abstract
Maximizing the performance of cooperative perception of a tracked target by a team of mobile robots while maintaining the team's formation is the core problem addressed in this work. We propose a solution by integrating the controller and the estimator modules in a formation control loop. The controller module is a distributed non-linear model predictive controller and the estimator module is based on a particle filter for cooperative target tracking. A formal description of the integration followed by simulation and real robot results on two different teams of homogeneous robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target's cooperative estimate while complying with the performance criteria such as keeping a pre-set distance between the team-mates and/or the target and obstacle avoidance.

DOI [BibTex]

DOI [BibTex]


no image
Cooperative Robot Localization and Target Tracking based on Least Squares Minimization

Ahmad, A., Tipaldi, G., Lima, P., Burgard, W.

In pages: 5696-5701, IEEE, May 2013 (inproceedings)

Abstract
In this paper we address the problem of cooperative localization and target tracking with a team of moving robots. We model the problem as a least squares minimization problem and show that this problem can be efficiently solved using sparse optimization methods. To achieve this, we represent the problem as a graph, where the nodes are robot and target poses at individual time-steps and the edges are their relative measurements. Static landmarks at known position are used to define a common reference frame for the robots and the targets. In this way, we mitigate the risk of using measurements and state estimates more than once, since all the relative measurements are i.i.d. and no marginalization is performed. Experiments performed using a set of real robots show higher accuracy compared to a Kalman filter.

DOI [BibTex]

DOI [BibTex]


no image
Unknown-color spherical object detection and tracking

Troppan, A., Guerreiro, E., Celiberti, F., Santos, G., Ahmad, A., Lima, P.

In pages: 1-4, IEEE, April 2013 (inproceedings)

Abstract
Detection and tracking of an unknown-color spherical object in a partially-known environment using a robot with a single camera is the core problem addressed in this article. A novel color detection mechanism, which exploits the geometrical properties of the spherical object's projection onto the image plane, precedes the object's detection process. A Kalman filter-based tracker uses the object detection in its update step and tracks the spherical object. Real robot experimental evaluation of the proposed method is presented on soccer robots detecting and tracking an unknown-color ball.

DOI [BibTex]

DOI [BibTex]


Thumb xl visapp
Simple, fast, accurate melanocytic lesion segmentation in 1D colour space

Peruch, F., Bogo, F., Bonazza, M., Bressan, M., Cappelleri, V., Peserico, E.

In VISAPP (1), pages: 191-200, Barcelona, February 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl thumbiccvsilvia
Estimating Human Pose with Flowing Puppets

Zuffi, S., Romero, J., Schmid, C., Black, M. J.

In IEEE International Conference on Computer Vision (ICCV), pages: 3312-3319, 2013 (inproceedings)

Abstract
We address the problem of upper-body human pose estimation in uncontrolled monocular video sequences, without manual initialization. Most current methods focus on isolated video frames and often fail to correctly localize arms and hands. Inferring pose over a video sequence is advantageous because poses of people in adjacent frames exhibit properties of smooth variation due to the nature of human and camera motion. To exploit this, previous methods have used prior knowledge about distinctive actions or generic temporal priors combined with static image likelihoods to track people in motion. Here we take a different approach based on a simple observation: Information about how a person moves from frame to frame is present in the optical flow field. We develop an approach for tracking articulated motions that "links" articulated shape models of people in adjacent frames trough the dense optical flow. Key to this approach is a 2D shape model of the body that we use to compute how the body moves over time. The resulting "flowing puppets" provide a way of integrating image evidence across frames to improve pose inference. We apply our method on a challenging dataset of TV video sequences and show state-of-the-art performance.

pdf code data DOI Project Page Project Page Project Page [BibTex]

pdf code data DOI Project Page Project Page Project Page [BibTex]


no image
Right Ventricle Segmentation by Temporal Information Constrained Gradient Vector Flow

X. Yang, S. Y. Yeo, Y. Su, C. Lim, M. Wan, L. Zhong, R. S. Tan

In IEEE International Conference on Systems, Man, and Cybernetics, 2013 (inproceedings)

Abstract
Evaluation of right ventricular (RV) structure and function is of importance in the management of most cardiac disorders. But the segmentation of RV has always been consid- ered challenging due to low contrast of the myocardium with surrounding and high shape variability of the RV. In this paper, we present a 2D + T active contour model for segmentation and tracking of RV endocardium on cardiac magnetic resonance (MR) images. To take into account the temporal information between adjacent frames, we propose to integrate the time-dependent constraints into the energy functional of the classical gradient vector flow (GVF). As a result, the prior motion knowledge of RV is introduced in the deformation process through the time-dependent constraints in the proposed GVF-T model. A weighting parameter is introduced to adjust the weight of the temporal information against the image data itself. The additional external edge forces retrieved from the temporal constraints may be useful for the RV segmentation, such that lead to a better segmentation performance. The effectiveness of the proposed approach is supported by experimental results on synthetic and cardiac MR images.

[BibTex]

[BibTex]


Thumb xl gcpr thumbnail 200 112
A Comparison of Directional Distances for Hand Pose Estimation

Tzionas, D., Gall, J.

In German Conference on Pattern Recognition (GCPR), 8142, pages: 131-141, Lecture Notes in Computer Science, (Editors: Weickert, Joachim and Hein, Matthias and Schiele, Bernt), Springer, 2013 (inproceedings)

Abstract
Benchmarking methods for 3d hand tracking is still an open problem due to the difficulty of acquiring ground truth data. We introduce a new dataset and benchmarking protocol that is insensitive to the accumulative error of other protocols. To this end, we create testing frame pairs of increasing difficulty and measure the pose estimation error separately for each of them. This approach gives new insights and allows to accurately study the performance of each feature or method without employing a full tracking pipeline. Following this protocol, we evaluate various directional distances in the context of silhouette-based 3d hand tracking, expressed as special cases of a generalized Chamfer distance form. An appropriate parameter setup is proposed for each of them, and a comparative study reveals the best performing method in this context.

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]

pdf Supplementary Project Page link (url) DOI Project Page [BibTex]


Thumb xl iccv13
Dynamic Probabilistic Volumetric Models

Ulusoy, A. O., Biris, O., Mundy, J. L.

In ICCV, pages: 505-512, 2013 (inproceedings)

Abstract
This paper presents a probabilistic volumetric framework for image based modeling of general dynamic 3-d scenes. The framework is targeted towards high quality modeling of complex scenes evolving over thousands of frames. Extensive storage and computational resources are required in processing large scale space-time (4-d) data. Existing methods typically store separate 3-d models at each time step and do not address such limitations. A novel 4-d representation is proposed that adaptively subdivides in space and time to explain the appearance of 3-d dynamic surfaces. This representation is shown to achieve compression of 4-d data and provide efficient spatio-temporal processing. The advances of the proposed framework is demonstrated on standard datasets using free-viewpoint video and 3-d tracking applications.

video pdf DOI [BibTex]

video pdf DOI [BibTex]


Thumb xl apcom1
Model Reconstruction of Patient-Specific Cardiac Mesh from Segmented Contour Lines

C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. S. Tan, K. K. Poh, P. Chai,

In Asia Pacific Congress on Computational Mechanics, 2013 (inproceedings)

Abstract
We propose an automatic algorithm for the reconstruction of a set of patient-specific dynamic cardiac mesh model with 1-to-1 mesh correspondence over the whole cardiac cycle. This work focus on both the reconstruction technique of the initial 3D model of the heart and also the consistent mapping of the vertex positions throughout all the 3D meshes. This process is technically more challenging due to the wide interval spacing between MRI images as compared to CT images, making overlapping blood vessels much harder to discern. We propose a tree-based connectivity data structure to perform a filtering process to eliminate weak connections between contours on adjacent slices. The reconstructed 3D model from the first time step is used as a base template model, and deformed to fit the segmented contours in the next time step. Our algorithm has been tested on an actual acquisition of cardiac MRI images over one cardiac cycle.

[BibTex]

[BibTex]


Thumb xl pic cdc iccv13
A Generic Deformation Model for Dense Non-Rigid Surface Registration: a Higher-Order MRF-based Approach

Zeng, Y., Wang, C., Gu, X., Samaras, D., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), pages: 3360~3367, 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl ncmrf cvpr2013
Nonlinearly Constrained MRFs: Exploring the Intrinsic Dimensions of Higher-Order Cliques

Zeng, Y., Wang, C., Soatto, S., Yau, S.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2013 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Thumb xl embs1
Reconstructing patient-specific cardiac models from contours via Delaunay triangulation and graph-cuts

Min Wan, Calvin Lim, Junmei Zhang, Yi Su, Si Yong Yeo, Desheng Wang, Ru San Tan, Liang Zhong

In International Conference of the IEEE Engineering in Medicine and Biology Society, pages: 2976-9, 2013 (inproceedings)

[BibTex]

[BibTex]


Thumb xl cinc1
Regional comparison of left ventricle systolic wall stress reveals intraregional uniformity in healthy subjects

Soo Kng Teo, Si Yong Yeo, May Ling Tan, Chi Wan Lim, Liang Zhong, Ru San Tan, Yi Su

In Computing in Cardiology Conference, pages: 575 - 578, 2013 (inproceedings)

Abstract
This study aimed to assess the feasibility of using the regional uniformity of the left ventricle (LV) wall stress (WS) to diagnose patients with myocardial infarction. We present a novel method using a similarity map that measures the degree of uniformity in nominal systolic WS across pairs of segments within the same patient. The values of the nominal WS are computed at each vertex point from a 1-to-1 corresponding mesh pair of the LV at the end-diastole (ED) and end-systole (ES) phases. The 3D geometries of the LV at ED and ES are reconstructed from border-delineated MRI images and the 1-to-1 mesh generated using a strain-energy minimization approach. The LV is then partitioned into 16 segments based on published clinical standard and the nominal WS histogram distribution for each of the segment was computed. A similarity index is then computed for each pair of histogram distributions to generate a 16-by-16 similarity map. Based on our initial study involving 12 MI patients and 9 controls, we observed uniformity for intra- regional comparisons in the controls compared against the patients. Our results suggest that the regional uniformity of the nominal systolic WS in the form of a similarity map can potentially be used as a discriminant between MI patients and normal controls.

[BibTex]

[BibTex]

2011


Thumb xl teaser iccv2011
Outdoor Human Motion Capture using Inverse Kinematics and von Mises-Fisher Sampling

Pons-Moll, G., Baak, A., Gall, J., Leal-Taixe, L., Mueller, M., Seidel, H., Rosenhahn, B.

In IEEE International Conference on Computer Vision (ICCV), pages: 1243-1250, November 2011 (inproceedings)

project page pdf supplemental [BibTex]

2011

project page pdf supplemental [BibTex]


Thumb xl iccv2011homepageimage notext small
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M.

In Int. Conf. on Computer Vision (ICCV), pages: 1951-1958, IEEE, Barcelona, November 2011 (inproceedings)

Abstract
The 3D shape of the human body is useful for applications in fitness, games and apparel. Accurate body scanners, however, are expensive, limiting the availability of 3D body models. We present a method for human shape reconstruction from noisy monocular image and range data using a single inexpensive commodity sensor. The approach combines low-resolution image silhouettes with coarse range data to estimate a parametric model of the body. Accurate 3D shape estimates are obtained by combining multiple monocular views of a person moving in front of the sensor. To cope with varying body pose, we use a SCAPE body model which factors 3D body shape and pose variations. This enables the estimation of a single consistent shape while allowing pose to vary. Additionally, we describe a novel method to minimize the distance between the projected 3D body contour and the image silhouette that uses analytic derivatives of the objective function. We propose a simple method to estimate standard body measurements from the recovered SCAPE model and show that the accuracy of our method is competitive with commercial body scanning systems costing orders of magnitude more.

pdf YouTube poster Project Page Project Page [BibTex]

pdf YouTube poster Project Page Project Page [BibTex]


Thumb xl iccv2012
Means in spaces of tree-like shapes

Aasa Feragen, Soren Hauberg, Mads Nielsen, Francois Lauze

In Computer Vision (ICCV), 2011 IEEE International Conference on, pages: 736 -746, IEEE, november 2011 (inproceedings)

Publishers site PDF Suppl. material [BibTex]

Publishers site PDF Suppl. material [BibTex]


Thumb xl teaser iccvw
Everybody needs somebody: modeling social and grouping behavior on a linear programming multiple people tracker

Leal-Taixé, L., Rosenhahn, G. P. A. B.

In IEEE International Conference on Computer Vision Workshops (IICCVW), November 2011 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


Thumb xl lugano11small
Evaluating the Automated Alignment of 3D Human Body Scans

Hirshberg, D. A., Loper, M., Rachlin, E., Tsoli, A., Weiss, A., Corner, B., Black, M. J.

In 2nd International Conference on 3D Body Scanning Technologies, pages: 76-86, (Editors: D’Apuzzo, Nicola), Hometrica Consulting, Lugano, Switzerland, October 2011 (inproceedings)

Abstract
The statistical analysis of large corpora of human body scans requires that these scans be in alignment, either for a small set of key landmarks or densely for all the vertices in the scan. Existing techniques tend to rely on hand-placed landmarks or algorithms that extract landmarks from scans. The former is time consuming and subjective while the latter is error prone. Here we show that a model-based approach can align meshes automatically, producing alignment accuracy similar to that of previous methods that rely on many landmarks. Specifically, we align a low-resolution, artist-created template body mesh to many high-resolution laser scans. Our alignment procedure employs a robust iterative closest point method with a regularization that promotes smooth and locally rigid deformation of the template mesh. We evaluate our approach on 50 female body models from the CAESAR dataset that vary significantly in body shape. To make the method fully automatic, we define simple feature detectors for the head and ankles, which provide initial landmark locations. We find that, if body poses are fairly similar, as in CAESAR, the fully automated method provides dense alignments that enable statistical analysis and anthropometric measurement.

pdf slides DOI Project Page [BibTex]

pdf slides DOI Project Page [BibTex]


Thumb xl mt
Branch&Rank: Non-Linear Object Detection

(Best Impact Paper Prize)

Lehmann, A., Gehler, P., VanGool, L.

In Proceedings of the British Machine Vision Conference (BMVC), pages: 8.1-8.11, (Editors: Jesse Hoey and Stephen McKenna and Emanuele Trucco), BMVA Press, September 2011, http://dx.doi.org/10.5244/C.25.8 (inproceedings)

video of talk pdf slides supplementary [BibTex]

video of talk pdf slides supplementary [BibTex]


Thumb xl teaser dagm2011
Efficient and Robust Shape Matching for Model Based Human Motion Capture

Pons-Moll, G., Leal-Taixé, L., Truong, T., Rosenhahn, B.

In German Conference on Pattern Recognition (GCPR), pages: 416-425, September 2011 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


no image
BrainGate pilot clinical trials: Progress in translating neural engineering principles to clinical testing

Hochberg, L., Simeral, J., Black, M., Bacher, D., Barefoot, L., Berhanu, E., Borton, D., Cash, S., Feldman, J., Gallivan, E., Homer, M., Jarosiewicz, B., King, B., Liu, J., Malik, W., Masse, N., Perge, J., Rosler, D., Schmansky, N., Travers, B., Truccolo, W., Nurmikko, A., Donoghue, J.

33rd Annual International IEEE EMBS Conference of the IEEE Engineering in Medicine and Biology Society, Boston, MA, August 2011 (conference)

[BibTex]

[BibTex]


Thumb xl screen shot 2012 02 23 at 09.35.10
Learning Output Kernels with Block Coordinate Descent

Dinuzzo, F., Ong, C. S., Gehler, P., Pillonetto, G.

In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages: 49-56, ICML ’11, (Editors: Getoor, Lise and Scheffer, Tobias), ACM, New York, NY, USA, June 2011 (inproceedings)

data+code pdf [BibTex]

data+code pdf [BibTex]


Thumb xl jampani11 spie
Role of expertise and contralateral symmetry in the diagnosis of pneumoconiosis: an experimental study

Jampani, V., Vaidya, V., Sivaswamy, J., Tourani, K. L.

In Proc. SPIE 7966, Medical Imaging: Image Perception, Observer Performance, and Technology Assessment, 2011, Florida, March 2011 (inproceedings)

Abstract
Pneumoconiosis, a lung disease caused by the inhalation of dust, is mainly diagnosed using chest radiographs. The effects of using contralateral symmetric (CS) information present in chest radiographs in the diagnosis of pneumoconiosis are studied using an eye tracking experimental study. The role of expertise and the influence of CS information on the performance of readers with different expertise level are also of interest. Experimental subjects ranging from novices & medical students to staff radiologists were presented with 17 double and 16 single lung images, and were asked to give profusion ratings for each lung zone. Eye movements and the time for their diagnosis were also recorded. Kruskal-Wallis test (χ2(6) = 13.38, p = .038), showed that the observer error (average sum of absolute differences) in double lung images differed significantly across the different expertise categories when considering all the participants. Wilcoxon-signed rank test indicated that the observer error was significantly higher for single-lung images (Z = 3.13, p < .001) than for the double-lung images for all the participants. Mann-Whitney test (U = 28, p = .038) showed that the differential error between single and double lung images is significantly higher in doctors [staff & residents] than in non-doctors [others]. Thus, Expertise & CS information plays a significant role in the diagnosis of pneumoconiosis. CS information helps in diagnosing pneumoconiosis by reducing the general tendency of giving less profusion ratings. Training and experience appear to play important roles in learning to use the CS information present in the chest radiographs.

url link (url) [BibTex]

url link (url) [BibTex]