Header logo is ps


2019


Thumb xl cover walking seq
AirCap – Aerial Outdoor Motion Capture

Ahmad, A., Price, E., Tallamraju, R., Saini, N., Lawless, G., Ludwig, R., Martinovic, I., Bülthoff, H. H., Black, M. J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Workshop on Aerial Swarms, November 2019 (misc)

Abstract
This paper presents an overview of the Grassroots project Aerial Outdoor Motion Capture (AirCap) running at the Max Planck Institute for Intelligent Systems. AirCap's goal is to achieve markerless, unconstrained, human motion capture (mocap) in unknown and unstructured outdoor environments. To that end, we have developed an autonomous flying motion capture system using a team of aerial vehicles (MAVs) with only on-board, monocular RGB cameras. We have conducted several real robot experiments involving up to 3 aerial vehicles autonomously tracking and following a person in several challenging scenarios using our approach of active cooperative perception developed in AirCap. Using the images captured by these robots during the experiments, we have demonstrated a successful offline body pose and shape estimation with sufficiently high accuracy. Overall, we have demonstrated the first fully autonomous flying motion capture system involving multiple robots for outdoor scenarios.

[BibTex]

2019

[BibTex]


Thumb xl mosh heroes icon
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

September 2019, U.S.~Patent 10,417,818 (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

MoSh Project pdf [BibTex]


Thumb xl webteaser
Perceiving Systems (2016-2018)
Scientific Advisory Board Report, 2019 (misc)

pdf [BibTex]

pdf [BibTex]

2012


Thumb xl teaser dagstuhl lau
Exploiting pedestrian interaction via global optimization and social behaviors

Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.

In Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis, Springer, April 2012 (incollection)

pdf [BibTex]

2012

pdf [BibTex]


Thumb xl rotationpose
Data-driven Manifolds for Outdoor Motion Capture

Pons-Moll, G., Leal-Taix’e, L., Gall, J., Rosenhahn, B.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 305-328, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

video publisher's site pdf Project Page [BibTex]

video publisher's site pdf Project Page [BibTex]


Thumb xl tseb1
Scan-Based Flow Modelling in Human Upper Airways

Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

In Patient-Specific Modeling in Tomorrow’s Medicine, pages: 241 - 280, 0, (Editors: Amit Gefen), Springer, 2012 (inbook)

[BibTex]

[BibTex]


Thumb xl multiclasshf
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Thumb xl kinectbookchap
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

Project Page [BibTex]

Project Page [BibTex]

2007


Thumb xl implant
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

pdf [BibTex]

2007

pdf [BibTex]

2002


Thumb xl bildschirmfoto 2013 01 15 um 10.33.56
Bayesian Inference of Visual Motion Boundaries

Fleet, D. J., Black, M. J., Nestares, O.

In Exploring Artificial Intelligence in the New Millennium, pages: 139-174, (Editors: Lakemeyer, G. and Nebel, B.), Morgan Kaufmann Pub., July 2002 (incollection)

Abstract
This chapter addresses an open problem in visual motion analysis, the estimation of image motion in the vicinity of occlusion boundaries. With a Bayesian formulation, local image motion is explained in terms of multiple, competing, nonlinear models, including models for smooth (translational) motion and for motion boundaries. The generative model for motion boundaries explicitly encodes the orientation of the boundary, the velocities on either side, the motion of the occluding edge over time, and the appearance/disappearance of pixels at the boundary. We formulate the posterior probability distribution over the models and model parameters, conditioned on the image sequence. Approximate inference is achieved with a combination of tools: A Bayesian filter provides for online computation; factored sampling allows us to represent multimodal non-Gaussian distributions and to propagate beliefs with nonlinear dynamics from one time to the next; and mixture models are used to simplify the computation of joint prediction distributions in the Bayesian filter. To efficiently represent such a high-dimensional space, we also initialize samples using the responses of a low-level motion-discontinuity detector. The basic formulation and computational model provide a general probabilistic framework for motion estimation with multiple, nonlinear models.

pdf [BibTex]

2002

pdf [BibTex]