Header logo is ps


2012


Thumb xl eigenmaps
An SVD-Based Approach for Ghost Detection and Removal in High Dynamic Range Images

Srikantha, A., Sidibe, D., Meriaudeau, F.

International Conference on Pattern Recognition (ICPR), pages: 380-383, November 2012 (article)

pdf [BibTex]

2012

pdf [BibTex]


Thumb xl posear
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

publisher's site code pdf Project Page Project Page Project Page [BibTex]

publisher's site code pdf Project Page Project Page Project Page [BibTex]


Thumb xl representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]


Thumb xl ghosthdr
Ghost Detection and Removal for High Dynamic Range Images: Recent Advances

Srikantha, A., Sidib’e, D.

Signal Processing: Image Communication, 27, pages: 650-662, July 2012 (article)

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Thumb xl jneuroscicrop
Visual Orientation and Directional Selectivity Through Thalamic Synchrony

Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

Journal of Neuroscience, 32(26):9073-9088, June 2012 (article)

Abstract
Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10–20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.

preprint publisher's site Project Page [BibTex]

preprint publisher's site Project Page [BibTex]


Thumb xl bilinear
Bilinear Spatiotemporal Basis Models

Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.

ACM Transactions on Graphics (TOG), 31(2):17, ACM, April 2012 (article)

Abstract
A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer graphics as a collection of moving spatial landmarks. Spatiotemporal data is inherent in a number of graphics applications including animation, simulation, and object and camera tracking. The principal modes of variation in the spatial geometry of objects are typically modeled using dimensionality reduction techniques, while concurrently, trajectory representations like splines and autoregressive models are widely used to exploit the temporal regularity of deformation. In this article, we present the bilinear spatiotemporal basis as a model that simultaneously exploits spatial and temporal regularity while maintaining the ability to generalize well to new sequences. This factorization allows the use of analytical, predefined functions to represent temporal variation (e.g., B-Splines or the Discrete Cosine Transform) resulting in efficient model representation and estimation. The model can be interpreted as representing the data as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the bilinear model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and compare it in terms of compaction, generalization ability, predictive precision, and efficiency to existing models. We demonstrate the application of the model to a number of graphics tasks including labeling, gap-filling, denoising, and motion touch-up.

pdf project page link (url) [BibTex]

pdf project page link (url) [BibTex]


Thumb xl teaser dagstuhl lau
Exploiting pedestrian interaction via global optimization and social behaviors

Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.

In Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis, Springer, April 2012 (incollection)

pdf [BibTex]

pdf [BibTex]


Thumb xl rotationpose
Data-driven Manifolds for Outdoor Motion Capture

Pons-Moll, G., Leal-Taix’e, L., Gall, J., Rosenhahn, B.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 305-328, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

video publisher's site pdf Project Page [BibTex]

video publisher's site pdf Project Page [BibTex]


Thumb xl thumb latent space2
A metric for comparing the anthropomorphic motion capability of artificial hands

Feix, T., Romero, J., Ek, C. H., Schmiedmayer, H., Kragic, D.

IEEE RAS Transactions on Robotics, TRO, pages: 974-980, 2012 (article)

Publisher site Human Grasping Database Project [BibTex]

Publisher site Human Grasping Database Project [BibTex]


Thumb xl rat4
The Ankyrin 3 (ANK3) Bipolar Disorder Gene Regulates Psychiatric-related Behaviors that are Modulated by Lithium and Stress

Leussis, M., Berry-Scott, E., Saito, M., Jhuang, H., Haan, G., Alkan, O., Luce, C., Madison, J., Sklar, P., Serre, T., Root, D., Petryshen, T.

Biological Psychiatry , 2012 (article)

Prepublication Article Abstract [BibTex]

Prepublication Article Abstract [BibTex]


Thumb xl tseb1
Scan-Based Flow Modelling in Human Upper Airways

Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

In Patient-Specific Modeling in Tomorrow’s Medicine, pages: 241 - 280, 0, (Editors: Amit Gefen), Springer, 2012 (inbook)

[BibTex]

[BibTex]


Thumb xl multiclasshf
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Thumb xl kinectbookchap
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl imavis2012
Natural Metrics and Least-Committed Priors for Articulated Tracking

Soren Hauberg, Stefan Sommer, Kim S. Pedersen

Image and Vision Computing, 30(6-7):453-461, Elsevier, 2012 (article)

Publishers site Code PDF [BibTex]

Publishers site Code PDF [BibTex]

2006


Thumb xl neuralcomp
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

pdf preprint pdf from publisher abstract [BibTex]

2006

pdf preprint pdf from publisher abstract [BibTex]


Thumb xl screen shot 2012 06 06 at 11.15.02 am
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

pdf [BibTex]

2005


Thumb xl ivc05
Representing cyclic human motion using functional analysis

Ormoneit, D., Black, M. J., Hastie, T., Kjellström, H.

Image and Vision Computing, 23(14):1264-1276, December 2005 (article)

Abstract
We present a robust automatic method for modeling cyclic 3D human motion such as walking using motion-capture data. The pose of the body is represented by a time-series of joint angles which are automatically segmented into a sequence of motion cycles. The mean and the principal components of these cycles are computed using a new algorithm that enforces smooth transitions between the cycles by operating in the Fourier domain. Key to this method is its ability to automatically deal with noise and missing data. A learned walking model is then exploited for Bayesian tracking of 3D human motion.

pdf pdf from publisher DOI [BibTex]

2005

pdf pdf from publisher DOI [BibTex]


Thumb xl picture for seq 15 stabilization
A Flow-Based Approach to Vehicle Detection and Background Mosaicking in Airborne Video

Yalcin, H. C. R. B. M. J. H. M.

IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Video Proceedings,, pages: 1202, 2005 (patent)

YouTube pdf [BibTex]

YouTube pdf [BibTex]