Header logo is ps


2015


Thumb xl grassmanteaser
Scalable Robust Principal Component Analysis using Grassmann Averages

Hauberg, S., Feragen, A., Enficiaud, R., Black, M.

IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), December 2015 (article)

Abstract
In large datasets, manual data verification is impossible, and we must expect the number of outliers to increase with data size. While principal component analysis (PCA) can reduce data size, and scalable solutions exist, it is well-known that outliers can arbitrarily corrupt the results. Unfortunately, state-of-the-art approaches for robust PCA are not scalable. We note that in a zero-mean dataset, each observation spans a one-dimensional subspace, giving a point on the Grassmann manifold. We show that the average subspace corresponds to the leading principal component for Gaussian data. We provide a simple algorithm for computing this Grassmann Average (GA), and show that the subspace estimate is less sensitive to outliers than PCA for general distributions. Because averages can be efficiently computed, we immediately gain scalability. We exploit robust averaging to formulate the Robust Grassmann Average (RGA) as a form of robust PCA. The resulting Trimmed Grassmann Average (TGA) is appropriate for computer vision because it is robust to pixel outliers. The algorithm has linear computational complexity and minimal memory requirements. We demonstrate TGA for background modeling, video restoration, and shadow removal. We show scalability by performing robust PCA on the entire Star Wars IV movie; a task beyond any current method. Source code is available online.

preprint pdf from publisher supplemental Project Page [BibTex]

2015


Thumb xl splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

pdf video code/model errata DOI Project Page Project Page [BibTex]

pdf video code/model errata DOI Project Page Project Page [BibTex]


Thumb xl dynateaser
Dyna: A Model of Dynamic Human Shape in Motion

Pons-Moll, G., Romero, J., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 34(4):120:1-120:14, ACM, August 2015 (article)

Abstract
To look human, digital full-body avatars need to have soft tissue deformations like those of real people. We learn a model of soft-tissue deformations from examples using a high-resolution 4D capture system and a method that accurately registers a template mesh to sequences of 3D scans. Using over 40,000 scans of ten subjects, we learn how soft tissue motion causes mesh triangles to deform relative to a base 3D body model. Our Dyna model uses a low-dimensional linear subspace to approximate soft-tissue deformation and relates the subspace coefficients to the changing pose of the body. Dyna uses a second-order auto-regressive model that predicts soft-tissue deformations based on previous deformations, the velocity and acceleration of the body, and the angular velocities and accelerations of the limbs. Dyna also models how deformations vary with a person’s body mass index (BMI), producing different deformations for people with different shapes. Dyna realistically represents the dynamics of soft tissue for previously unseen subjects and motions. We provide tools for animators to modify the deformations and apply them to new stylized characters.

pdf preprint video data DOI Project Page Project Page [BibTex]

pdf preprint video data DOI Project Page Project Page [BibTex]


Thumb xl objs2acts
Linking Objects to Actions: Encoding of Target Object and Grasping Strategy in Primate Ventral Premotor Cortex

Vargas-Irwin, C. E., Franquemont, L., Black, M. J., Donoghue, J. P.

Journal of Neuroscience, 35(30):10888-10897, July 2015 (article)

Abstract
Neural activity in ventral premotor cortex (PMv) has been associated with the process of matching perceived objects with the motor commands needed to grasp them. It remains unclear how PMv networks can flexibly link percepts of objects affording multiple grasp options into a final desired hand action. Here, we use a relational encoding approach to track the functional state of PMv neuronal ensembles in macaque monkeys through the process of passive viewing, grip planning, and grasping movement execution. We used objects affording multiple possible grip strategies. The task included separate instructed delay periods for object presentation and grip instruction. This approach allowed us to distinguish responses elicited by the visual presentation of the objects from those associated with selecting a given motor plan for grasping. We show that PMv continuously incorporates information related to object shape and grip strategy as it becomes available, revealing a transition from a set of ensemble states initially most closely related to objects, to a new set of ensemble patterns reflecting unique object-grip combinations. These results suggest that PMv dynamically combines percepts, gradually navigating toward activity patterns associated with specific volitional actions, rather than directly mapping perceptual object properties onto categorical grip representations. Our results support the idea that PMv is part of a network that dynamically computes motor plans from perceptual information. Significance Statement: The present work demonstrates that the activity of groups of neurons in primate ventral premotor cortex reflects information related to visually presented objects, as well as the motor strategy used to grasp them, linking individual objects to multiple possible grips. PMv could provide useful control signals for neuroprosthetic assistive devices designed to interact with objects in a flexible way.

publisher link DOI Project Page [BibTex]

publisher link DOI Project Page [BibTex]


Thumb xl screen shot 2015 10 14 at 08.57.57
Multi-view and 3D Deformable Part Models

Pepik, B., Stark, M., Gehler, P., Schiele, B.

Pattern Analysis and Machine Intelligence, 37(11):14, IEEE, March 2015 (article)

Abstract
As objects are inherently 3-dimensional, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2], 3D object classes [3], Pascal3D+ [4], Pascal VOC 2007 [5], EPFL multi-view cars [6]).

DOI Project Page [BibTex]

DOI Project Page [BibTex]


Thumb xl ssimssmall
Spike train SIMilarity Space (SSIMS): A framework for single neuron and ensemble data analysis

Vargas-Irwin, C. E., Brandman, D. M., Zimmermann, J. B., Donoghue, J. P., Black, M. J.

Neural Computation, 27(1):1-31, MIT Press, January 2015 (article)

Abstract
We present a method to evaluate the relative similarity of neural spiking patterns by combining spike train distance metrics with dimensionality reduction. Spike train distance metrics provide an estimate of similarity between activity patterns at multiple temporal resolutions. Vectors of pair-wise distances are used to represent the intrinsic relationships between multiple activity patterns at the level of single units or neuronal ensembles. Dimensionality reduction is then used to project the data into concise representations suitable for clustering analysis as well as exploratory visualization. Algorithm performance and robustness are evaluated using multielectrode ensemble activity data recorded in behaving primates. We demonstrate how Spike train SIMilarity Space (SSIMS) analysis captures the relationship between goal directions for an 8-directional reaching task and successfully segregates grasp types in a 3D grasping task in the absence of kinematic information. The algorithm enables exploration of virtually any type of neural spiking (time series) data, providing similarity-based clustering of neural activity states with minimal assumptions about potential information encoding models.

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]

pdf: publisher site pdf: author's proof DOI Project Page [BibTex]


Thumb xl thumb teaser mrg
Metric Regression Forests for Correspondence Estimation

Pons-Moll, G., Taylor, J., Shotton, J., Hertzmann, A., Fitzgibbon, A.

International Journal of Computer Vision, pages: 1-13, 2015 (article)

springer PDF Project Page [BibTex]

springer PDF Project Page [BibTex]


Thumb xl fotorobos
Formation control driven by cooperative object tracking

Lima, P., Ahmad, A., Dias, A., Conceição, A., Moreira, A., Silva, E., Almeida, L., Oliveira, L., Nascimento, T.

Robotics and Autonomous Systems, 63(1):68-79, 2015 (article)

Abstract
In this paper we introduce a formation control loop that maximizes the performance of the cooperative perception of a tracked target by a team of mobile robots, while maintaining the team in formation, with a dynamically adjustable geometry which is a function of the quality of the target perception by the team. In the formation control loop, the controller module is a distributed non-linear model predictive controller and the estimator module fuses local estimates of the target state, obtained by a particle filter at each robot. The two modules and their integration are described in detail, including a real-time database associated to a wireless communication protocol that facilitates the exchange of state data while reducing collisions among team members. Simulation and real robot results for indoor and outdoor teams of different robots are presented. The results highlight how our method successfully enables a team of homogeneous robots to minimize the total uncertainty of the tracked target cooperative estimate while complying with performance criteria such as keeping a pre-set distance between the teammates and the target, avoiding collisions with teammates and/or surrounding obstacles.

DOI [BibTex]

DOI [BibTex]

2014


Thumb xl mosh heroes icon
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M. M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]

2014

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl sap copy
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


no image
3D to 2D bijection for spherical objects under equidistant fisheye projection

Ahmad, A., Xavier, J., Santos-Victor, J., Lima, P.

Computer Vision and Image Understanding, 125, pages: 172-183, August 2014 (article)

Abstract
The core problem addressed in this article is the 3D position detection of a spherical object of known-radius in a single image frame, obtained by a dioptric vision system consisting of only one fisheye lens camera that follows equidistant projection model. The central contribution is a bijection principle between a known-radius spherical object’s 3D world position and its 2D projected image curve, that we prove, thus establishing that for every possible 3D world position of the spherical object, there exists a unique curve on the image plane if the object is projected through a fisheye lens that follows equidistant projection model. Additionally, we present a setup for the experimental verification of the principle’s correctness. In previously published works we have applied this principle to detect and subsequently track a known-radius spherical object.

DOI [BibTex]

DOI [BibTex]


Thumb xl fancy rgb
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

pdf video link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl pami
3D Traffic Scene Understanding from Movable Platforms

Geiger, A., Lauer, M., Wojek, C., Stiller, C., Urtasun, R.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(5):1012-1025, published, IEEE, Los Alamitos, CA, May 2014 (article)

Abstract
In this paper, we present a novel probabilistic generative model for multi-object traffic scene understanding from movable platforms which reasons jointly about the 3D scene layout as well as the location and orientation of objects in the scene. In particular, the scene topology, geometry and traffic activities are inferred from short video sequences. Inspired by the impressive driving capabilities of humans, our model does not rely on GPS, lidar or map knowledge. Instead, it takes advantage of a diverse set of visual cues in the form of vehicle tracklets, vanishing points, semantic scene labels, scene flow and occupancy grids. For each of these cues we propose likelihood functions that are integrated into a probabilistic generative model. We learn all model parameters from training data using contrastive divergence. Experiments conducted on videos of 113 representative intersections show that our approach successfully infers the correct layout in a variety of very challenging scenarios. To evaluate the importance of each feature cue, experiments using different feature combinations are conducted. Furthermore, we show how by employing context derived from the proposed method we are able to improve over the state-of-the-art in terms of object detection and object orientation estimation in challenging and cluttered urban environments.

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl modeltransport
Model transport: towards scalable transfer learning on manifolds - supplemental material

Freifeld, O., Hauberg, S., Black, M. J.

(9), April 2014 (techreport)

Abstract
This technical report is complementary to "Model Transport: Towards Scalable Transfer Learning on Manifolds" and contains proofs, explanation of the attached video (visualization of bases from the body shape experiments), and high-resolution images of select results of individual reconstructions from the shape experiments. It is identical to the supplemental mate- rial submitted to the Conference on Computer Vision and Pattern Recognition (CVPR 2014) on November 2013.

PDF [BibTex]


no image
RoCKIn@Work in a Nutshell

Ahmad, A., Amigoni, A., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schiaffonati, V., Schneider, S.

(FP7-ICT-601012 Revision 1.2), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
The main purpose of RoCKIn@Work is to foster innovation in industrial service robotics. Innovative robot applications for industry call for the capability to work interactively with humans and reduced initial programming requirements. This will open new opportunities to automate challenging manufacturing processes, even for small to medium-sized lots and highly customer-specific production requirements. Thereby, the RoCKIn competitions pave the way for technology transfer and contribute to the continued commercial competitiveness of European industry.

[BibTex]

[BibTex]


no image
RoCKIn@Home in a Nutshell

Ahmad, A., Amigoni, F., Awaad, I., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Fontana, G., Hegger, F., Hochgeschwender, N., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Schneider, S.

(FP7-ICT-601012 Revision 0.8), RoCKIn - Robot Competitions Kick Innovation in Cognitive Systems and Robotics, March 2014 (techreport)

Abstract
RoCKIn@Home is a competition that aims at bringing together the benefits of scientific benchmarking with the attraction of scientific competitions in the realm of domestic service robotics. The objectives are to bolster research in service robotics for home applications and to raise public awareness of the current and future capabilities of such robot systems to meet societal challenges like healthy ageing and longer independent living.

[BibTex]

[BibTex]


Thumb xl homerjournal
Adaptive Offset Correction for Intracortical Brain Computer Interfaces

Homer, M. L., Perge, J. A., Black, M. J., Harrison, M. T., Cash, S. S., Hochberg, L. R.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(2):239-248, March 2014 (article)

Abstract
Intracortical brain computer interfaces (iBCIs) decode intended movement from neural activity for the control of external devices such as a robotic arm. Standard approaches include a calibration phase to estimate decoding parameters. During iBCI operation, the statistical properties of the neural activity can depart from those observed during calibration, sometimes hindering a user’s ability to control the iBCI. To address this problem, we adaptively correct the offset terms within a Kalman filter decoder via penalized maximum likelihood estimation. The approach can handle rapid shifts in neural signal behavior (on the order of seconds) and requires no knowledge of the intended movement. The algorithm, called MOCA, was tested using simulated neural activity and evaluated retrospectively using data collected from two people with tetraplegia operating an iBCI. In 19 clinical research test cases, where a nonadaptive Kalman filter yielded relatively high decoding errors, MOCA significantly reduced these errors (10.6 ± 10.1\%; p < 0.05, pairwise t-test). MOCA did not significantly change the error in the remaining 23 cases where a nonadaptive Kalman filter already performed well. These results suggest that MOCA provides more robust decoding than the standard Kalman filter for iBCIs.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


Thumb xl tpami small
A physically-based approach to reflection separation: from physical modeling to constrained optimization

Kong, N., Tai, Y., Shin, J. S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 36(2):209-221, IEEE Computer Society, Febuary 2014 (article)

Abstract
We propose a physically-based approach to separate reflection using multiple polarized images with a background scene captured behind glass. The input consists of three polarized images, each captured from the same view point but with a different polarizer angle separated by 45 degrees. The output is the high-quality separation of the reflection and background layers from each of the input images. A main technical challenge for this problem is that the mixing coefficient for the reflection and background layers depends on the angle of incidence and the orientation of the plane of incidence, which are spatially varying over the pixels of an image. Exploiting physical properties of polarization for a double-surfaced glass medium, we propose a multiscale scheme which automatically finds the optimal separation of the reflection and background layers. Through experiments, we demonstrate that our approach can generate superior results to those of previous methods.

Publisher site [BibTex]

Publisher site [BibTex]


Thumb xl tbme
Simpler, faster, more accurate melanocytic lesion segmentation through MEDS

Peruch, F., Bogo, F., Bonazza, M., Cappelleri, V., Peserico, E.

IEEE Transactions on Biomedical Engineering, 61(2):557-565, February 2014 (article)

DOI [BibTex]

DOI [BibTex]


Thumb xl freelymoving2
A freely-moving monkey treadmill model

Foster, J., Nuyujukian, P., Freifeld, O., Gao, H., Walker, R., Ryu, S., Meng, T., Murmann, B., Black, M., Shenoy, K.

J. of Neural Engineering, 11(4):046020, 2014 (article)

Abstract
Objective: Motor neuroscience and brain-machine interface (BMI) design is based on examining how the brain controls voluntary movement, typically by recording neural activity and behavior from animal models. Recording technologies used with these animal models have traditionally limited the range of behaviors that can be studied, and thus the generality of science and engineering research. We aim to design a freely-moving animal model using neural and behavioral recording technologies that do not constrain movement. Approach: We have established a freely-moving rhesus monkey model employing technology that transmits neural activity from an intracortical array using a head-mounted device and records behavior through computer vision using markerless motion capture. We demonstrate the excitability and utility of this new monkey model, including the fi rst recordings from motor cortex while rhesus monkeys walk quadrupedally on a treadmill. Main results: Using this monkey model, we show that multi-unit threshold-crossing neural activity encodes the phase of walking and that the average ring rate of the threshold crossings covaries with the speed of individual steps. On a population level, we find that neural state-space trajectories of walking at diff erent speeds have similar rotational dynamics in some dimensions that evolve at the step rate of walking, yet robustly separate by speed in other state-space dimensions. Significance: Freely-moving animal models may allow neuroscientists to examine a wider range of behaviors and can provide a flexible experimental paradigm for examining the neural mechanisms that underlie movement generation across behaviors and environments. For BMIs, freely-moving animal models have the potential to aid prosthetic design by examining how neural encoding changes with posture, environment, and other real-world context changes. Understanding this new realm of behavior in more naturalistic settings is essential for overall progress of basic motor neuroscience and for the successful translation of BMIs to people with paralysis.

pdf Supplementary DOI Project Page [BibTex]

pdf Supplementary DOI Project Page [BibTex]


Thumb xl tang14ijcv
Detection and Tracking of Occluded People

Tang, S., Andriluka, M., Schiele, B.

International Journal of Computer Vision, 110, pages: 58-69, 2014 (article)

PDF [BibTex]

PDF [BibTex]


Thumb xl jnb1
Segmentation of Biomedical Images Using Active Contour Model with Robust Image Feature and Shape Prior

S. Y. Yeo, X. Xie, I. Sazonov, P. Nithiarasu

International Journal for Numerical Methods in Biomedical Engineering, 30(2):232- 248, 2014 (article)

Abstract
In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method.

[BibTex]

[BibTex]


Thumb xl simulated annealing
Simulated Annealing

Gall, J.

In Encyclopedia of Computer Vision, pages: 737-741, 0, (Editors: Ikeuchi, K. ), Springer Verlag, 2014, to appear (inbook)

[BibTex]

[BibTex]


Thumb xl ijcvflow2
A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles behind Them

Sun, D., Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 106(2):115-137, 2014 (article)

Abstract
The accuracy of optical flow estimation algorithms has been improving steadily as evidenced by results on the Middlebury optical flow benchmark. The typical formulation, however, has changed little since the work of Horn and Schunck. We attempt to uncover what has made recent advances possible through a thorough analysis of how the objective function, the optimization method, and modern implementation practices influence accuracy. We discover that "classical'' flow formulations perform surprisingly well when combined with modern optimization and implementation techniques. One key implementation detail is the median filtering of intermediate flow fields during optimization. While this improves the robustness of classical methods it actually leads to higher energy solutions, meaning that these methods are not optimizing the original objective function. To understand the principles behind this phenomenon, we derive a new objective function that formalizes the median filtering heuristic. This objective function includes a non-local smoothness term that robustly integrates flow estimates over large spatial neighborhoods. By modifying this new term to include information about flow and image boundaries we develop a method that can better preserve motion details. To take advantage of the trend towards video in wide-screen format, we further introduce an asymmetric pyramid downsampling scheme that enables the estimation of longer range horizontal motions. The methods are evaluated on Middlebury, MPI Sintel, and KITTI datasets using the same parameter settings.

pdf full text code [BibTex]


Thumb xl glsn1
Automatic 4D Reconstruction of Patient-Specific Cardiac Mesh with 1- to-1 Vertex Correspondence from Segmented Contours Lines

C. W. Lim, Y. Su, S. Y. Yeo, G. M. Ng, V. T. Nguyen, L. Zhong, R. S. Tan, K. K. Poh, P. Chai,

PLOS ONE, 9(4), 2014 (article)

Abstract
We propose an automatic algorithm for the reconstruction of patient-specific cardiac mesh models with 1-to-1 vertex correspondence. In this framework, a series of 3D meshes depicting the endocardial surface of the heart at each time step is constructed, based on a set of border delineated magnetic resonance imaging (MRI) data of the whole cardiac cycle. The key contribution in this work involves a novel reconstruction technique to generate a 4D (i.e., spatial–temporal) model of the heart with 1-to-1 vertex mapping throughout the time frames. The reconstructed 3D model from the first time step is used as a base template model and then deformed to fit the segmented contours from the subsequent time steps. A method to determine a tree-based connectivity relationship is proposed to ensure robust mapping during mesh deformation. The novel feature is the ability to handle intra- and inter-frame 2D topology changes of the contours, which manifests as a series of merging and splitting of contours when the images are viewed either in a spatial or temporal sequence. Our algorithm has been tested on five acquisitions of cardiac MRI and can successfully reconstruct the full 4D heart model in around 30 minutes per subject. The generated 4D heart model conforms very well with the input segmented contours and the mesh element shape is of reasonably good quality. The work is important in the support of downstream computational simulation activities.

[BibTex]

[BibTex]

2012


Thumb xl eigenmaps
An SVD-Based Approach for Ghost Detection and Removal in High Dynamic Range Images

Srikantha, A., Sidibe, D., Meriaudeau, F.

International Conference on Pattern Recognition (ICPR), pages: 380-383, November 2012 (article)

pdf [BibTex]

2012

pdf [BibTex]


Thumb xl coregtr
Coregistration: Supplemental Material

Hirshberg, D., Loper, M., Rachlin, E., Black, M. J.

(No. 4), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf [BibTex]

pdf [BibTex]


Thumb xl lietr
Lie Bodies: A Manifold Representation of 3D Human Shape. Supplemental Material

Freifeld, O., Black, M. J.

(No. 5), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl posear
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

publisher's site code pdf Project Page Project Page Project Page [BibTex]

publisher's site code pdf Project Page Project Page Project Page [BibTex]


Thumb xl sinteltr
MPI-Sintel Optical Flow Benchmark: Supplemental Material

Butler, D. J., Wulff, J., Stanley, G. B., Black, M. J.

(No. 6), Max Planck Institute for Intelligent Systems, October 2012 (techreport)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl representativecrop
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]


Thumb xl ghosthdr
Ghost Detection and Removal for High Dynamic Range Images: Recent Advances

Srikantha, A., Sidib’e, D.

Signal Processing: Image Communication, 27, pages: 650-662, July 2012 (article)

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl thumb screen shot 2012 10 06 at 11.48.38 am
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Thumb xl jneuroscicrop
Visual Orientation and Directional Selectivity Through Thalamic Synchrony

Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

Journal of Neuroscience, 32(26):9073-9088, June 2012 (article)

Abstract
Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10–20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.

preprint publisher's site Project Page [BibTex]

preprint publisher's site Project Page [BibTex]


Thumb xl bilinear
Bilinear Spatiotemporal Basis Models

Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.

ACM Transactions on Graphics (TOG), 31(2):17, ACM, April 2012 (article)

Abstract
A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer graphics as a collection of moving spatial landmarks. Spatiotemporal data is inherent in a number of graphics applications including animation, simulation, and object and camera tracking. The principal modes of variation in the spatial geometry of objects are typically modeled using dimensionality reduction techniques, while concurrently, trajectory representations like splines and autoregressive models are widely used to exploit the temporal regularity of deformation. In this article, we present the bilinear spatiotemporal basis as a model that simultaneously exploits spatial and temporal regularity while maintaining the ability to generalize well to new sequences. This factorization allows the use of analytical, predefined functions to represent temporal variation (e.g., B-Splines or the Discrete Cosine Transform) resulting in efficient model representation and estimation. The model can be interpreted as representing the data as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the bilinear model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and compare it in terms of compaction, generalization ability, predictive precision, and efficiency to existing models. We demonstrate the application of the model to a number of graphics tasks including labeling, gap-filling, denoising, and motion touch-up.

pdf project page link (url) [BibTex]

pdf project page link (url) [BibTex]


Thumb xl teaser dagstuhl lau
Exploiting pedestrian interaction via global optimization and social behaviors

Leal-Taixé, L., Pons-Moll, G., Rosenhahn, B.

In Theoretic Foundations of Computer Vision: Outdoor and Large-Scale Real-World Scene Analysis, Springer, April 2012 (incollection)

pdf [BibTex]

pdf [BibTex]


Thumb xl humim2012
HUMIM Software for Articulated Tracking

Soren Hauberg, Kim S. Pedersen

(01/2012), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

Code PDF [BibTex]

Code PDF [BibTex]


Thumb xl tr feragen2012
A geometric framework for statistics on trees

Aasa Feragen, Mads Nielsen, Soren Hauberg, Pechin Lo, Marleen de Bruijne, Francois Lauze

(11/02), Department of Computer Science, University of Copenhagen, January 2012 (techreport)

PDF [BibTex]

PDF [BibTex]


Thumb xl rotationpose
Data-driven Manifolds for Outdoor Motion Capture

Pons-Moll, G., Leal-Taix’e, L., Gall, J., Rosenhahn, B.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 305-328, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

video publisher's site pdf Project Page [BibTex]

video publisher's site pdf Project Page [BibTex]


Thumb xl thumb latent space2
A metric for comparing the anthropomorphic motion capability of artificial hands

Feix, T., Romero, J., Ek, C. H., Schmiedmayer, H., Kragic, D.

IEEE RAS Transactions on Robotics, TRO, pages: 974-980, 2012 (article)

Publisher site Human Grasping Database Project [BibTex]

Publisher site Human Grasping Database Project [BibTex]


Thumb xl rat4
The Ankyrin 3 (ANK3) Bipolar Disorder Gene Regulates Psychiatric-related Behaviors that are Modulated by Lithium and Stress

Leussis, M., Berry-Scott, E., Saito, M., Jhuang, H., Haan, G., Alkan, O., Luce, C., Madison, J., Sklar, P., Serre, T., Root, D., Petryshen, T.

Biological Psychiatry , 2012 (article)

Prepublication Article Abstract [BibTex]

Prepublication Article Abstract [BibTex]


Thumb xl tseb1
Scan-Based Flow Modelling in Human Upper Airways

Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

In Patient-Specific Modeling in Tomorrow’s Medicine, pages: 241 - 280, 0, (Editors: Amit Gefen), Springer, 2012 (inbook)

[BibTex]

[BibTex]


Thumb xl multiclasshf
An Introduction to Random Forests for Multi-class Object Detection

Gall, J., Razavi, N., van Gool, L.

In Outdoor and Large-Scale Real-World Scene Analysis, 7474, pages: 243-263, LNCS, (Editors: Dellaert, Frank and Frahm, Jan-Michael and Pollefeys, Marc and Rosenhahn, Bodo and Leal-Taix’e, Laura), Springer, 2012 (incollection)

code code for Hough forest publisher's site pdf Project Page [BibTex]

code code for Hough forest publisher's site pdf Project Page [BibTex]


Thumb xl kinectbookchap
Home 3D body scans from noisy image and range data

Weiss, A., Hirshberg, D., Black, M. J.

In Consumer Depth Cameras for Computer Vision: Research Topics and Applications, pages: 99-118, 6, (Editors: Andrea Fossati and Juergen Gall and Helmut Grabner and Xiaofeng Ren and Kurt Konolige), Springer-Verlag, 2012 (incollection)

Project Page [BibTex]

Project Page [BibTex]


Thumb xl imavis2012
Natural Metrics and Least-Committed Priors for Articulated Tracking

Soren Hauberg, Stefan Sommer, Kim S. Pedersen

Image and Vision Computing, 30(6-7):453-461, Elsevier, 2012 (article)

Publishers site Code PDF [BibTex]

Publishers site Code PDF [BibTex]

2007


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

link (url) DOI [BibTex]

2007

link (url) DOI [BibTex]


Thumb xl pedestal
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

pdf [BibTex]

pdf [BibTex]


Thumb xl ijcvflow2
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Thumb xl arrayhd
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]


Thumb xl implant
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

pdf [BibTex]

pdf [BibTex]