Header logo is ps


2019


Towards Geometric Understanding of Motion
Towards Geometric Understanding of Motion

Ranjan, A.

University of Tübingen, December 2019 (phdthesis)

Abstract

The motion of the world is inherently dependent on the spatial structure of the world and its geometry. Therefore, classical optical flow methods try to model this geometry to solve for the motion. However, recent deep learning methods take a completely different approach. They try to predict optical flow by learning from labelled data. Although deep networks have shown state-of-the-art performance on classification problems in computer vision, they have not been as effective in solving optical flow. The key reason is that deep learning methods do not explicitly model the structure of the world in a neural network, and instead expect the network to learn about the structure from data. We hypothesize that it is difficult for a network to learn about motion without any constraint on the structure of the world. Therefore, we explore several approaches to explicitly model the geometry of the world and its spatial structure in deep neural networks.

The spatial structure in images can be captured by representing it at multiple scales. To represent multiple scales of images in deep neural nets, we introduce a Spatial Pyramid Network (SpyNet). Such a network can leverage global information for estimating large motions and local information for estimating small motions. We show that SpyNet significantly improves over previous optical flow networks while also being the smallest and fastest neural network for motion estimation. SPyNet achieves a 97% reduction in model parameters over previous methods and is more accurate.

The spatial structure of the world extends to people and their motion. Humans have a very well-defined structure, and this information is useful in estimating optical flow for humans. To leverage this information, we create a synthetic dataset for human optical flow using a statistical human body model and motion capture sequences. We use this dataset to train deep networks and see significant improvement in the ability of the networks to estimate human optical flow.

The structure and geometry of the world affects the motion. Therefore, learning about the structure of the scene together with the motion can benefit both problems. To facilitate this, we introduce Competitive Collaboration, where several neural networks are constrained by geometry and can jointly learn about structure and motion in the scene without any labels. To this end, we show that jointly learning single view depth prediction, camera motion, optical flow and motion segmentation using Competitive Collaboration achieves state-of-the-art results among unsupervised approaches.

Our findings provide support for our hypothesis that explicit constraints on structure and geometry of the world lead to better methods for motion estimation.

PhD Thesis [BibTex]

2019

PhD Thesis [BibTex]


Decoding subcategories of human bodies from both body- and face-responsive cortical regions
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

paper pdf DOI [BibTex]

paper pdf DOI [BibTex]


Active Perception based Formation Control for Multiple Aerial Vehicles
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, 4(4):4491-4498, IEEE, October 2019 (article)

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

pdf DOI Project Page [BibTex]

pdf DOI Project Page [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

arxiv preprint arXiv:1909.01815, September 2019 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation,and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

paper project page [BibTex]

paper project page [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


 Perceptual Effects of Inconsistency in Human Animations
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from {3D} Measurements
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

2017


Learning a model of facial shape and expression from {4D} scans
Learning a model of facial shape and expression from 4D scans

Li, T., Bolkart, T., Black, M. J., Li, H., Romero, J.

ACM Transactions on Graphics, 36(6):194:1-194:17, November 2017, Two first authors contributed equally (article)

Abstract
The field of 3D face modeling has a large gap between high-end and low-end methods. At the high end, the best facial animation is indistinguishable from real humans, but this comes at the cost of extensive manual labor. At the low end, face capture from consumer depth sensors relies on 3D face models that are not expressive enough to capture the variability in natural facial shape and expression. We seek a middle ground by learning a facial model from thousands of accurately aligned 3D scans. Our FLAME model (Faces Learned with an Articulated Model and Expressions) is designed to work with existing graphics software and be easy to fit to data. FLAME uses a linear shape space trained from 3800 scans of human heads. FLAME combines this linear shape space with an articulated jaw, neck, and eyeballs, pose-dependent corrective blendshapes, and additional global expression from 4D face sequences in the D3DFACS dataset along with additional 4D sequences.We accurately register a template mesh to the scan sequences and make the D3DFACS registrations available for research purposes. In total the model is trained from over 33, 000 scans. FLAME is low-dimensional but more expressive than the FaceWarehouse model and the Basel Face Model. We compare FLAME to these models by fitting them to static 3D scans and 4D sequences using the same optimization method. FLAME is significantly more accurate and is available for research purposes (http://flame.is.tue.mpg.de).

data/model video code chumpy code tensorflow paper supplemental Project Page [BibTex]

2017

data/model video code chumpy code tensorflow paper supplemental Project Page [BibTex]


Investigating Body Image Disturbance in Anorexia Nervosa Using Novel Biometric Figure Rating Scales: A Pilot Study
Investigating Body Image Disturbance in Anorexia Nervosa Using Novel Biometric Figure Rating Scales: A Pilot Study

Mölbert, S. C., Thaler, A., Streuber, S., Black, M. J., Karnath, H., Zipfel, S., Mohler, B., Giel, K. E.

European Eating Disorders Review, 25(6):607-612, November 2017 (article)

Abstract
This study uses novel biometric figure rating scales (FRS) spanning body mass index (BMI) 13.8 to 32.2 kg/m2 and BMI 18 to 42 kg/m2. The aims of the study were (i) to compare FRS body weight dissatisfaction and perceptual distortion of women with anorexia nervosa (AN) to a community sample; (ii) how FRS parameters are associated with questionnaire body dissatisfaction, eating disorder symptoms and appearance comparison habits; and (iii) whether the weight spectrum of the FRS matters. Women with AN (n = 24) and a community sample of women (n = 104) selected their current and ideal body on the FRS and completed additional questionnaires. Women with AN accurately picked the body that aligned best with their actual weight in both FRS. Controls underestimated their BMI in the FRS 14–32 and were accurate in the FRS 18–42. In both FRS, women with AN desired a body close to their actual BMI and controls desired a thinner body. Our observations suggest that body image disturbance in AN is unlikely to be characterized by a visual perceptual disturbance, but rather by an idealization of underweight in conjunction with high body dissatisfaction. The weight spectrum of FRS can influence the accuracy of BMI estimation.

publisher DOI Project Page [BibTex]


Embodied Hands: Modeling and Capturing Hands and Bodies Together
Embodied Hands: Modeling and Capturing Hands and Bodies Together

Romero, J., Tzionas, D., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6):245:1-245:17, 245:1–245:17, ACM, November 2017 (article)

Abstract
Humans move their hands and bodies together to communicate and solve tasks. Capturing and replicating such coordinated activity is critical for virtual characters that behave realistically. Surprisingly, most methods treat the 3D modeling and tracking of bodies and hands separately. Here we formulate a model of hands and bodies interacting together and fit it to full-body 4D sequences. When scanning or capturing the full body in 3D, hands are small and often partially occluded, making their shape and pose hard to recover. To cope with low-resolution, occlusion, and noise, we develop a new model called MANO (hand Model with Articulated and Non-rigid defOrmations). MANO is learned from around 1000 high-resolution 3D scans of hands of 31 subjects in a wide variety of hand poses. The model is realistic, low-dimensional, captures non-rigid shape changes with pose, is compatible with standard graphics packages, and can fit any human hand. MANO provides a compact mapping from hand poses to pose blend shape corrections and a linear manifold of pose synergies. We attach MANO to a standard parameterized 3D body shape model (SMPL), resulting in a fully articulated body and hand model (SMPL+H). We illustrate SMPL+H by fitting complex, natural, activities of subjects captured with a 4D scanner. The fitting is fully automatic and results in full body models that move naturally with detailed hand motions and a realism not seen before in full body performance capture. The models and data are freely available for research purposes at http://mano.is.tue.mpg.de.

website youtube paper suppl video link (url) DOI Project Page [BibTex]

website youtube paper suppl video link (url) DOI Project Page [BibTex]


An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking
An Online Scalable Approach to Unified Multirobot Cooperative Localization and Object Tracking

Ahmad, A., Lawless, G., Lima, P.

IEEE Transactions on Robotics (T-RO), 33, pages: 1184 - 1199, October 2017 (article)

Abstract
In this article we present a unified approach for multi-robot cooperative simultaneous localization and object tracking based on particle filters. Our approach is scalable with respect to the number of robots in the team. We introduce a method that reduces, from an exponential to a linear growth, the space and computation time requirements with respect to the number of robots in order to maintain a given level of accuracy in the full state estimation. Our method requires no increase in the number of particles with respect to the number of robots. However, in our method each particle represents a full state hypothesis, leading to the linear dependency on the number of robots of both space and time complexity. The derivation of the algorithm implementing our approach from a standard particle filter algorithm and its complexity analysis are presented. Through an extensive set of simulation experiments on a large number of randomized datasets, we demonstrate the correctness and efficacy of our approach. Through real robot experiments on a standardized open dataset of a team of four soccer playing robots tracking a ball, we evaluate our method's estimation accuracy with respect to the ground truth values. Through comparisons with other methods based on i) nonlinear least squares minimization and ii) joint extended Kalman filter, we further highlight our method's advantages. Finally, we also present a robustness test for our approach by evaluating it under scenarios of communication and vision failure in teammate robots.

Published Version link (url) DOI [BibTex]


Human Shape Estimation using Statistical Body Models
Human Shape Estimation using Statistical Body Models

Loper, M. M.

University of Tübingen, May 2017 (thesis)

Abstract
Human body estimation methods transform real-world observations into predictions about human body state. These estimation methods benefit a variety of health, entertainment, clothing, and ergonomics applications. State may include pose, overall body shape, and appearance. Body state estimation is underconstrained by observations; ambiguity presents itself both in the form of missing data within observations, and also in the form of unknown correspondences between observations. We address this challenge with the use of a statistical body model: a data-driven virtual human. This helps resolve ambiguity in two ways. First, it fills in missing data, meaning that incomplete observations still result in complete shape estimates. Second, the model provides a statistically-motivated penalty for unlikely states, which enables more plausible body shape estimates. Body state inference requires more than a body model; we therefore build obser- vation models whose output is compared with real observations. In this thesis, body state is estimated from three types of observations: 3D motion capture markers, depth and color images, and high-resolution 3D scans. In each case, a forward process is proposed which simulates observations. By comparing observations to the results of the forward process, state can be adjusted to minimize the difference between simulated and observed data. We use gradient-based methods because they are critical to the precise estimation of state with a large number of parameters. The contributions of this work include three parts. First, we propose a method for the estimation of body shape, nonrigid deformation, and pose from 3D markers. Second, we present a concise approach to differentiating through the rendering process, with application to body shape estimation. And finally, we present a statistical body model trained from human body scans, with state-of-the-art fidelity, good runtime performance, and compatibility with existing animation packages.

Official Version [BibTex]


Early Stopping Without a Validation Set
Early Stopping Without a Validation Set

Mahsereci, M., Balles, L., Lassner, C., Hennig, P.

arXiv preprint arXiv:1703.09580, 2017 (article)

Abstract
Early stopping is a widely used technique to prevent poor generalization performance when training an over-expressive model by means of gradient-based optimization. To find a good point to halt the optimizer, a common practice is to split the dataset into a training and a smaller validation set to obtain an ongoing estimate of the generalization performance. In this paper we propose a novel early stopping criterion which is based on fast-to-compute, local statistics of the computed gradients and entirely removes the need for a held-out validation set. Our experiments show that this is a viable approach in the setting of least-squares and logistic regression as well as neural networks.

link (url) Project Page Project Page [BibTex]


Data-Driven Physics for Human Soft Tissue Animation
Data-Driven Physics for Human Soft Tissue Animation

Kim, M., Pons-Moll, G., Pujades, S., Bang, S., Kim, J., Black, M. J., Lee, S.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):54:1-54:12, 2017 (article)

Abstract
Data driven models of human poses and soft-tissue deformations can produce very realistic results, but they only model the visible surface of the human body and cannot create skin deformation due to interactions with the environment. Physical simulations can generalize to external forces, but their parameters are difficult to control. In this paper, we present a layered volumetric human body model learned from data. Our model is composed of a data-driven inner layer and a physics-based external layer. The inner layer is driven with a volumetric statistical body model (VSMPL). The soft tissue layer consists of a tetrahedral mesh that is driven using the finite element method (FEM). Model parameters, namely the segmentation of the body into layers and the soft tissue elasticity, are learned directly from 4D registrations of humans exhibiting soft tissue deformations. The learned two layer model is a realistic full-body avatar that generalizes to novel motions and external forces. Experiments show that the resulting avatars produce realistic results on held out sequences and react to external forces. Moreover, the model supports the retargeting of physical properties from one avatar when they share the same topology.

video paper link (url) Project Page [BibTex]

video paper link (url) Project Page [BibTex]


Learning Inference Models for Computer Vision
Learning Inference Models for Computer Vision

Jampani, V.

MPI for Intelligent Systems and University of Tübingen, 2017 (phdthesis)

Abstract
Computer vision can be understood as the ability to perform 'inference' on image data. Breakthroughs in computer vision technology are often marked by advances in inference techniques, as even the model design is often dictated by the complexity of inference in them. This thesis proposes learning based inference schemes and demonstrates applications in computer vision. We propose techniques for inference in both generative and discriminative computer vision models. Despite their intuitive appeal, the use of generative models in vision is hampered by the difficulty of posterior inference, which is often too complex or too slow to be practical. We propose techniques for improving inference in two widely used techniques: Markov Chain Monte Carlo (MCMC) sampling and message-passing inference. Our inference strategy is to learn separate discriminative models that assist Bayesian inference in a generative model. Experiments on a range of generative vision models show that the proposed techniques accelerate the inference process and/or converge to better solutions. A main complication in the design of discriminative models is the inclusion of prior knowledge in a principled way. For better inference in discriminative models, we propose techniques that modify the original model itself, as inference is simple evaluation of the model. We concentrate on convolutional neural network (CNN) models and propose a generalization of standard spatial convolutions, which are the basic building blocks of CNN architectures, to bilateral convolutions. First, we generalize the existing use of bilateral filters and then propose new neural network architectures with learnable bilateral filters, which we call `Bilateral Neural Networks'. We show how the bilateral filtering modules can be used for modifying existing CNN architectures for better image segmentation and propose a neural network approach for temporal information propagation in videos. Experiments demonstrate the potential of the proposed bilateral networks on a wide range of vision tasks and datasets. In summary, we propose learning based techniques for better inference in several computer vision models ranging from inverse graphics to freely parameterized neural networks. In generative vision models, our inference techniques alleviate some of the crucial hurdles in Bayesian posterior inference, paving new ways for the use of model based machine learning in vision. In discriminative CNN models, the proposed filter generalizations aid in the design of new neural network architectures that can handle sparse high-dimensional data as well as provide a way for incorporating prior knowledge into CNNs.

pdf [BibTex]

pdf [BibTex]


Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs
Sparse Inertial Poser: Automatic 3D Human Pose Estimation from Sparse IMUs

(Best Paper, Eurographics 2017)

Marcard, T. V., Rosenhahn, B., Black, M., Pons-Moll, G.

Computer Graphics Forum 36(2), Proceedings of the 38th Annual Conference of the European Association for Computer Graphics (Eurographics), pages: 349-360 , 2017 (article)

Abstract
We address the problem of making human motion capture in the wild more practical by using a small set of inertial sensors attached to the body. Since the problem is heavily under-constrained, previous methods either use a large number of sensors, which is intrusive, or they require additional video input. We take a different approach and constrain the problem by: (i) making use of a realistic statistical body model that includes anthropometric constraints and (ii) using a joint optimization framework to fit the model to orientation and acceleration measurements over multiple frames. The resulting tracker Sparse Inertial Poser (SIP) enables motion capture using only 6 sensors (attached to the wrists, lower legs, back and head) and works for arbitrary human motions. Experiments on the recently released TNT15 dataset show that, using the same number of sensors, SIP achieves higher accuracy than the dataset baseline without using any video data. We further demonstrate the effectiveness of SIP on newly recorded challenging motions in outdoor scenarios such as climbing or jumping over a wall

video pdf Project Page [BibTex]

video pdf Project Page [BibTex]


Efficient 2D and 3D Facade Segmentation using Auto-Context
Efficient 2D and 3D Facade Segmentation using Auto-Context

Gadde, R., Jampani, V., Marlet, R., Gehler, P.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017 (article)

Abstract
This paper introduces a fast and efficient segmentation technique for 2D images and 3D point clouds of building facades. Facades of buildings are highly structured and consequently most methods that have been proposed for this problem aim to make use of this strong prior information. Contrary to most prior work, we are describing a system that is almost domain independent and consists of standard segmentation methods. We train a sequence of boosted decision trees using auto-context features. This is learned using stacked generalization. We find that this technique performs better, or comparable with all previous published methods and present empirical results on all available 2D and 3D facade benchmark datasets. The proposed method is simple to implement, easy to extend, and very efficient at test-time inference.

arXiv Project Page [BibTex]

arXiv Project Page [BibTex]


{ClothCap}: Seamless {4D} Clothing Capture and Retargeting
ClothCap: Seamless 4D Clothing Capture and Retargeting

Pons-Moll, G., Pujades, S., Hu, S., Black, M.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 36(4):73:1-73:15, ACM, New York, NY, USA, 2017, Two first authors contributed equally (article)

Abstract
Designing and simulating realistic clothing is challenging and, while several methods have addressed the capture of clothing from 3D scans, previous methods have been limited to single garments and simple motions, lack detail, or require specialized texture patterns. Here we address the problem of capturing regular clothing on fully dressed people in motion. People typically wear multiple pieces of clothing at a time. To estimate the shape of such clothing, track it over time, and render it believably, each garment must be segmented from the others and the body. Our ClothCap approach uses a new multi-part 3D model of clothed bodies, automatically segments each piece of clothing, estimates the naked body shape and pose under the clothing, and tracks the 3D deformations of the clothing over time. We estimate the garments and their motion from 4D scans; that is, high-resolution 3D scans of the subject in motion at 60 fps. The model allows us to capture a clothed person in motion, extract their clothing, and retarget the clothing to new body shapes. ClothCap provides a step towards virtual try-on with a technology for capturing, modeling, and analyzing clothing in motion.

video project_page paper link (url) DOI Project Page Project Page [BibTex]

video project_page paper link (url) DOI Project Page Project Page [BibTex]


Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects
Capturing Hand-Object Interaction and Reconstruction of Manipulated Objects

Tzionas, D.

University of Bonn, 2017 (phdthesis)

Abstract
Hand motion capture with an RGB-D sensor gained recently a lot of research attention, however, even most recent approaches focus on the case of a single isolated hand. We focus instead on hands that interact with other hands or with a rigid or articulated object. Our framework successfully captures motion in such scenarios by combining a generative model with discriminatively trained salient points, collision detection and physics simulation to achieve a low tracking error with physically plausible poses. All components are unified in a single objective function that can be optimized with standard optimization techniques. We initially assume a-priori knowledge of the object's shape and skeleton. In case of unknown object shape there are existing 3d reconstruction methods that capitalize on distinctive geometric or texture features. These methods though fail for textureless and highly symmetric objects like household articles, mechanical parts or toys. We show that extracting 3d hand motion for in-hand scanning effectively facilitates the reconstruction of such objects and we fuse the rich additional information of hands into a 3d reconstruction pipeline. Finally, although shape reconstruction is enough for rigid objects, there is a lack of tools that build rigged models of articulated objects that deform realistically using RGB-D data. We propose a method that creates a fully rigged model consisting of a watertight mesh, embedded skeleton and skinning weights by employing a combination of deformable mesh tracking, motion segmentation based on spectral clustering and skeletonization based on mean curvature flow.

Thesis link (url) Project Page [BibTex]

2013


Branch\&Rank for Efficient Object Detection
Branch&Rank for Efficient Object Detection

Lehmann, A., Gehler, P., VanGool, L.

International Journal of Computer Vision, Springer, December 2013 (article)

Abstract
Ranking hypothesis sets is a powerful concept for efficient object detection. In this work, we propose a branch&rank scheme that detects objects with often less than 100 ranking operations. This efficiency enables the use of strong and also costly classifiers like non-linear SVMs with RBF-TeX kernels. We thereby relieve an inherent limitation of branch&bound methods as bounds are often not tight enough to be effective in practice. Our approach features three key components: a ranking function that operates on sets of hypotheses and a grouping of these into different tasks. Detection efficiency results from adaptively sub-dividing the object search space into decreasingly smaller sets. This is inherited from branch&bound, while the ranking function supersedes a tight bound which is often unavailable (except for rather limited function classes). The grouping makes the system effective: it separates image classification from object recognition, yet combines them in a single formulation, phrased as a structured SVM problem. A novel aspect of branch&rank is that a better ranking function is expected to decrease the number of classifier calls during detection. We use the VOC’07 dataset to demonstrate the algorithmic properties of branch&rank.

pdf link (url) [BibTex]

2013

pdf link (url) [BibTex]


Extracting Postural Synergies for Robotic Grasping
Extracting Postural Synergies for Robotic Grasping

Romero, J., Feix, T., Ek, C., Kjellstrom, H., Kragic, D.

Robotics, IEEE Transactions on, 29(6):1342-1352, December 2013 (article)

[BibTex]

[BibTex]


Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey
Markov Random Field Modeling, Inference & Learning in Computer Vision & Image Understanding: A Survey

Wang, C., Komodakis, N., Paragios, N.

Computer Vision and Image Understanding (CVIU), 117(11):1610-1627, November 2013 (article)

Abstract
In this paper, we present a comprehensive survey of Markov Random Fields (MRFs) in computer vision and image understanding, with respect to the modeling, the inference and the learning. While MRFs were introduced into the computer vision field about two decades ago, they started to become a ubiquitous tool for solving visual perception problems around the turn of the millennium following the emergence of efficient inference methods. During the past decade, a variety of MRF models as well as inference and learning methods have been developed for addressing numerous low, mid and high-level vision problems. While most of the literature concerns pairwise MRFs, in recent years we have also witnessed significant progress in higher-order MRFs, which substantially enhances the expressiveness of graph-based models and expands the domain of solvable problems. This survey provides a compact and informative summary of the major literature in this research topic.

Publishers site pdf [BibTex]

Publishers site pdf [BibTex]


no image
Multi-robot cooperative spherical-object tracking in 3D space based on particle filters

Ahmad, A., Lima, P.

Robotics and Autonomous Systems, 61(10):1084-1093, October 2013 (article)

Abstract
This article presents a cooperative approach for tracking a moving spherical object in 3D space by a team of mobile robots equipped with sensors, in a highly dynamic environment. The tracker’s core is a particle filter, modified to handle, within a single unified framework, the problem of complete or partial occlusion for some of the involved mobile sensors, as well as inconsistent estimates in the global frame among sensors, due to observation errors and/or self-localization uncertainty. We present results supporting our approach by applying it to a team of real soccer robots tracking a soccer ball, including comparison with ground truth.

DOI [BibTex]

DOI [BibTex]


Vision meets Robotics: The {KITTI} Dataset
Vision meets Robotics: The KITTI Dataset

Geiger, A., Lenz, P., Stiller, C., Urtasun, R.

International Journal of Robotics Research, 32(11):1231 - 1237 , Sage Publishing, September 2013 (article)

Abstract
We present a novel dataset captured from a VW station wagon for use in mobile robotics and autonomous driving research. In total, we recorded 6 hours of traffic scenarios at 10-100 Hz using a variety of sensor modalities such as high-resolution color and grayscale stereo cameras, a Velodyne 3D laser scanner and a high-precision GPS/IMU inertial navigation system. The scenarios are diverse, capturing real-world traffic situations and range from freeways over rural areas to inner-city scenes with many static and dynamic objects. Our data is calibrated, synchronized and timestamped, and we provide the rectified and raw image sequences. Our dataset also contains object labels in the form of 3D tracklets and we provide online benchmarks for stereo, optical flow, object detection and other tasks. This paper describes our recording platform, the data format and the utilities that we provide.

pdf DOI [BibTex]

pdf DOI [BibTex]


Statistics on Manifolds with Applications to Modeling Shape Deformations
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

pdf Project Page [BibTex]


Visualizing dimensionality reduction of systems biology data
Visualizing dimensionality reduction of systems biology data

Lehrmann, A. M., Huber, M., Polatkan, A. C., Pritzkau, A., Nieselt, K.

Data Mining and Knowledge Discovery, 1(27):146-165, Springer, July 2013 (article)

pdf SpRay [BibTex]

pdf SpRay [BibTex]


Unscented Kalman Filtering on Riemannian Manifolds
Unscented Kalman Filtering on Riemannian Manifolds

Soren Hauberg, Francois Lauze, Kim S. Pedersen

Journal of Mathematical Imaging and Vision, 46(1):103-120, Springer Netherlands, May 2013 (article)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

pdf [BibTex]

pdf [BibTex]


Quasi-Newton Methods: A New Direction
Quasi-Newton Methods: A New Direction

Hennig, P., Kiefel, M.

Journal of Machine Learning Research, 14(1):843-865, March 2013 (article)

Abstract
Four decades after their invention, quasi-Newton methods are still state of the art in unconstrained numerical optimization. Although not usually interpreted thus, these are learning algorithms that fit a local quadratic approximation to the objective function. We show that many, including the most popular, quasi-Newton methods can be interpreted as approximations of Bayesian linear regression under varying prior assumptions. This new notion elucidates some shortcomings of classical algorithms, and lights the way to a novel nonparametric quasi-Newton method, which is able to make more efficient use of available information at computational cost similar to its predecessors.

website+code pdf link (url) [BibTex]

website+code pdf link (url) [BibTex]


A Study of X-Ray Image Perception for Pneumoconiosis Detection
A Study of X-Ray Image Perception for Pneumoconiosis Detection

Jampani, V.

IIIT-Hyderabad, Hyderabad, India, January 2013 (mastersthesis)

Abstract
Pneumoconiosis is an occupational lung disease caused by the inhalation of industrial dust. Despite the increasing safety measures and better work place environments, pneumoconiosis is deemed to be the most common occupational disease in the developing countries like India and China. Screening and assessment of this disease is done through radiological observation of chest x-rays. Several studies have shown the significant inter and intra reader observer variation in the diagnosis of this disease, showing the complexity of the task and importance of the expertise in diagnosis. The present study is aimed at understanding the perceptual and cognitive factors affecting the reading of chest x-rays of pneumoconiosis patients. Understanding these factors helps in developing better image acquisition systems, better training regimen for radiologists and development of better computer aided diagnostic (CAD) systems. We used an eye tracking experiment to study the various factors affecting the assessment of this diffused lung disease. Specifically, we aimed at understanding the role of expertize, contralateral symmetric (CS) information present in chest x-rays on the diagnosis and the eye movements of the observers. We also studied the inter and intra observer fixation consistency along with the role of anatomical and bottom up saliency features in attracting the gaze of observers of different expertize levels, to get better insights into the effect of bottom up and top down visual saliency on the eye movements of observers. The experiment is conducted in a room dedicated to eye tracking experiments. Participants consisting of novices (3), medical students (12), residents (4) and staff radiologists (4) were presented with good quality PA chest X-rays, and were asked to give profusion ratings for each of the 6 lung zones. Image set consisting of 17 normal full chest x-rays and 16 single lung images are shown to the participants in random order. Time of the diagnosis and the eye movements are also recorded using a remote head free eye tracker. Results indicated that Expertise and CS play important roles in the diagnosis of pneumoconiosis. Novices and medical students are slow and inefficient whereas, residents and staff are quick and efficient. A key finding of our study is that the presence of CS information alone does not help improve diagnosis as much as learning how to use the information. This learning appears to be gained from focused training and years of experience. Hence, good training for radiologists and careful observation of each lung zone may improve the quality of diagnostic results. For residents, the eye scanning strategies play an important role in using the CS information present in chest radiographs; however, in staff radiologists, peripheral vision or higher-level cognitive processes seems to play role in using the CS information. There is a reasonably good inter and intra observer fixation consistency suggesting the use of similar viewing strategies. Experience is helping the observers to develop new visual strategies based on the image content so that they can quickly and efficiently assess the disease level. First few fixations seem to be playing an important role in choosing the visual strategy, appropriate for the given image. Both inter-rib and rib regions are given equal importance by the observers. Despite reading of chest x-rays being highly task dependent, bottom up saliency is shown to have played an important role in attracting the fixations of the observers. This role of bottom up saliency seems to be more in lower expertize groups compared to that of higher expertize groups. Both bottom up and top down influence of visual fixations seems to change with time. The relative role of top down and bottom up influences of visual attention is still not completely understood and it remains the part of future work. Based on our experimental results, we have developed an extended saliency model by combining the bottom up saliency and the saliency of lung regions in a chest x-ray. This new saliency model performed significantly better than bottom-up saliency in predicting the gaze of the observers in our experiment. Even though, the model is a simple combination of bottom-up saliency maps and segmented lung masks, this demonstrates that even basic models using simple image features can predict the fixations of the observers to a good accuracy. Experimental analysis suggested that the factors affecting the reading of chest x-rays of pneumoconiosis are complex and varied. A good understanding of these factors definitely helps in the development of better radiological screening of pneumoconiosis through improved training and also through the use of improved CAD tools. The presented work is an attempt to get insights into what these factors are and how they modify the behavior of the observers.

pdf [BibTex]

pdf [BibTex]


Simultaneous Cast Shadows, Illumination and Geometry Inference Using   Hypergraphs
Simultaneous Cast Shadows, Illumination and Geometry Inference Using Hypergraphs

Panagopoulos, A., Wang, C., Samaras, D., Paragios, N.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 35(2):437-449, 2013 (article)

pdf [BibTex]

pdf [BibTex]


Random Forests for Real Time {3D} Face Analysis
Random Forests for Real Time 3D Face Analysis

Fanelli, G., Dantone, M., Gall, J., Fossati, A., van Gool, L.

International Journal of Computer Vision, 101(3):437-458, Springer, 2013 (article)

Abstract
We present a random forest-based framework for real time head pose estimation from depth images and extend it to localize a set of facial features in 3D. Our algorithm takes a voting approach, where each patch extracted from the depth image can directly cast a vote for the head pose or each of the facial features. Our system proves capable of handling large rotations, partial occlusions, and the noisy depth data acquired using commercial sensors. Moreover, the algorithm works on each frame independently and achieves real time performance without resorting to parallel computations on a GPU. We present extensive experiments on publicly available, challenging datasets and present a new annotated head pose database recorded using a Microsoft Kinect.

data and code publisher's site pdf DOI Project Page [BibTex]

data and code publisher's site pdf DOI Project Page [BibTex]


Markerless Motion Capture of Multiple Characters Using Multi-view Image Segmentation
Markerless Motion Capture of Multiple Characters Using Multi-view Image Segmentation

Liu, Y., Gall, J., Stoll, C., Dai, Q., Seidel, H., Theobalt, C.

Transactions on Pattern Analysis and Machine Intelligence, 35(11):2720-2735, 2013 (article)

Abstract
Capturing the skeleton motion and detailed time-varying surface geometry of multiple, closely interacting peoples is a very challenging task, even in a multicamera setup, due to frequent occlusions and ambiguities in feature-to-person assignments. To address this task, we propose a framework that exploits multiview image segmentation. To this end, a probabilistic shape and appearance model is employed to segment the input images and to assign each pixel uniquely to one person. Given the articulated template models of each person and the labeled pixels, a combined optimization scheme, which splits the skeleton pose optimization problem into a local one and a lower dimensional global one, is applied one by one to each individual, followed with surface estimation to capture detailed nonrigid deformations. We show on various sequences that our approach can capture the 3D motion of humans accurately even if they move rapidly, if they wear wide apparel, and if they are engaged in challenging multiperson motions, including dancing, wrestling, and hugging.

data and video pdf DOI Project Page [BibTex]

data and video pdf DOI Project Page [BibTex]


Viewpoint and pose in body-form adaptation
Viewpoint and pose in body-form adaptation

Sekunova, A., Black, M., Parkinson, L., Barton, J. J. S.

Perception, 42(2):176-186, 2013 (article)

Abstract
Faces and bodies are complex structures, perception of which can play important roles in person identification and inference of emotional state. Face representations have been explored using behavioural adaptation: in particular, studies have shown that face aftereffects show relatively broad tuning for viewpoint, consistent with origin in a high-level structural descriptor far removed from the retinal image. Our goals were to determine first, if body aftereffects also showed a degree of viewpoint invariance, and second if they also showed pose invariance, given that changes in pose create even more dramatic changes in the 2-D retinal image. We used a 3-D model of the human body to generate headless body images, whose parameters could be varied to generate different body forms, viewpoints, and poses. In the first experiment, subjects adapted to varying viewpoints of either slim or heavy bodies in a neutral stance, followed by test stimuli that were all front-facing. In the second experiment, we used the same front-facing bodies in neutral stance as test stimuli, but compared adaptation from bodies in the same neutral stance to adaptation with the same bodies in different poses. We found that body aftereffects were obtained over substantial viewpoint changes, with no significant decline in aftereffect magnitude with increasing viewpoint difference between adapting and test images. Aftereffects also showed transfer across one change in pose but not across another. We conclude that body representations may have more viewpoint invariance than faces, and demonstrate at least some transfer across pose, consistent with a high-level structural description. Keywords: aftereffect, shape, face, representation

pdf from publisher abstract pdf link (url) Project Page [BibTex]

pdf from publisher abstract pdf link (url) Project Page [BibTex]


Non-parametric hand pose estimation with object context
Non-parametric hand pose estimation with object context

Romero, J., Kjellström, H., Ek, C. H., Kragic, D.

Image and Vision Computing , 31(8):555 - 564, 2013 (article)

Abstract
In the spirit of recent work on contextual recognition and estimation, we present a method for estimating the pose of human hands, employing information about the shape of the object in the hand. Despite the fact that most applications of human hand tracking involve grasping and manipulation of objects, the majority of methods in the literature assume a free hand, isolated from the surrounding environment. Occlusion of the hand from grasped objects does in fact often pose a severe challenge to the estimation of hand pose. In the presented method, object occlusion is not only compensated for, it contributes to the pose estimation in a contextual fashion; this without an explicit model of object shape. Our hand tracking method is non-parametric, performing a nearest neighbor search in a large database (.. entries) of hand poses with and without grasped objects. The system that operates in real time, is robust to self occlusions, object occlusions and segmentation errors, and provides full hand pose reconstruction from monocular video. Temporal consistency in hand pose is taken into account, without explicitly tracking the hand in the high-dim pose space. Experiments show the non-parametric method to outperform other state of the art regression methods, while operating at a significantly lower computational cost than comparable model-based hand tracking methods.

Publisher site pdf link (url) [BibTex]

Publisher site pdf link (url) [BibTex]

2011


High-quality reflection separation using polarized images
High-quality reflection separation using polarized images

Kong, N., Tai, Y., Shin, S. Y.

IEEE Transactions on Image Processing, 20(12):3393-3405, IEEE Signal Processing Society, December 2011 (article)

Abstract
In this paper, we deal with a problem of separating the effect of reflection from images captured behind glass. The input consists of multiple polarized images captured from the same view point but with different polarizer angles. The output is the high quality separation of the reflection layer and the background layer from the images. We formulate this problem as a constrained optimization problem and propose a framework that allows us to fully exploit the mutually exclusive image information in our input data. We test our approach on various images and demonstrate that our approach can generate good reflection separation results.

Publisher site [BibTex]

2011

Publisher site [BibTex]


no image
A human inspired gaze estimation system

Wulff, J., Sinha, P.

Journal of Vision, 11(11):507-507, ARVO, September 2011 (article)

Abstract
Estimating another person's gaze is a crucial skill in human social interactions. The social component is most apparent in dyadic gaze situations, in which the looker seems to look into the eyes of the observer, thereby signaling interest or a turn to speak. In a triadic situation, on the other hand, the looker's gaze is averted from the observer and directed towards another, specific target. This is mostly interpreted as a cue for joint attention, creating awareness of a predator or another point of interest. In keeping with the task's social significance, humans are very proficient at gaze estimation. Our accuracy ranges from less than one degree for dyadic settings to approximately 2.5 degrees for triadic ones. Our goal in this work is to draw inspiration from human gaze estimation mechanisms in order to create an artificial system that can approach the former's accuracy levels. Since human performance is severely impaired by both image-based degradations (Ando, 2004) and a change of facial configurations (Jenkins & Langton, 2003), the underlying principles are believed to be based both on simple image cues such as contrast/brightness distribution and on more complex geometric processing to reconstruct the actual shape of the head. By incorporating both kinds of cues in our system's design, we are able to surpass the accuracy of existing eye-tracking systems, which rely exclusively on either image-based or geometry-based cues (Yamazoe et al., 2008). A side-benefit of this combined approach is that it allows for gaze estimation despite moderate view-point changes. This is important for settings where subjects, say young children or certain kinds of patients, might not be fully cooperative to allow a careful calibration. Our model and implementation of gaze estimation opens up new experimental questions about human mechanisms while also providing a useful tool for general calibration-free, non-intrusive remote eye-tracking.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


no image
Detecting synchrony in degraded audio-visual streams

Dhandhania, K., Wulff, J., Sinha, P.

Journal of Vision, 11(11):800-800, ARVO, September 2011 (article)

Abstract
Even 8–10 week old infants, when presented with two dynamic faces and a speech stream, look significantly longer at the ‘correct’ talking person (Patterson & Werker, 2003). This is true even though their reduced visual acuity prevents them from utilizing high spatial frequencies. Computational analyses in the field of audio/video synchrony and automatic speaker detection (e.g. Hershey & Movellan, 2000), in contrast, usually depend on high-resolution images. Therefore, the correlation mechanisms found in these computational studies are not directly applicable to the processes through which we learn to integrate the modalities of speech and vision. In this work, we investigated the correlation between speech signals and degraded video signals. We found a high correlation persisting even with high image degradation, resembling the low visual acuity of young infants. Additionally (in a fashion similar to Graf et al., 2002) we explored which parts of the face correlate with the audio in the degraded video sequences. Perfect synchrony and small offsets in the audio were used while finding the correlation, thereby detecting visual events preceding and following audio events. In order to achieve a sufficiently high temporal resolution, high-speed video sequences (500 frames per second) of talking people were used. This is a temporal resolution unachieved in previous studies and has allowed us to capture very subtle and short visual events. We believe that the results of this study might be interesting not only to vision researchers, but, by revealing subtle effects on a very fine timescale, also to people working in computer graphics and the generation and animation of artificial faces.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Trajectory Space: A Dual Representation for Nonrigid Structure from Motion
Trajectory Space: A Dual Representation for Nonrigid Structure from Motion

Akhter, I., Sheikh, Y., Khan, S., Kanade, T.

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 33(7):1442-1456, IEEE, July 2011 (article)

Abstract
Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes. These basis are object dependent and therefore have to be estimated anew for each video sequence. In contrast, we propose a dual approach to describe the evolving 3D structure in trajectory space by a linear combination of basis trajectories. We describe the dual relationship between the two approaches, showing that they both have equal power for representing 3D structure. We further show that the temporal smoothness in 3D trajectories alone can be used for recovering nonrigid structure from a moving camera. The principal advantage of expressing deforming 3D structure in trajectory space is that we can define an object independent basis. This results in a significant reduction in unknowns, and corresponding stability in estimation. We propose the use of the Discrete Cosine Transform (DCT) as the object independent basis and empirically demonstrate that it approaches Principal Component Analysis (PCA) for natural motions. We report the performance of the proposed method, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piecewise rigid motion, partially nonrigid motion (such as a facial expressions), and highly nonrigid motion (such as a person walking or dancing).

pdf project page [BibTex]

pdf project page [BibTex]


Loose-limbed People: Estimating {3D} Human Pose and Motion Using Non-parametric Belief Propagation
Loose-limbed People: Estimating 3D Human Pose and Motion Using Non-parametric Belief Propagation

Sigal, L., Isard, M., Haussecker, H., Black, M. J.

International Journal of Computer Vision, 98(1):15-48, Springer Netherlands, May 2011 (article)

Abstract
We formulate the problem of 3D human pose estimation and tracking as one of inference in a graphical model. Unlike traditional kinematic tree representations, our model of the body is a collection of loosely-connected body-parts. In particular, we model the body using an undirected graphical model in which nodes correspond to parts and edges to kinematic, penetration, and temporal constraints imposed by the joints and the world. These constraints are encoded using pair-wise statistical distributions, that are learned from motion-capture training data. Human pose and motion estimation is formulated as inference in this graphical model and is solved using Particle Message Passing (PaMPas). PaMPas is a form of non-parametric belief propagation that uses a variation of particle filtering that can be applied over a general graphical model with loops. The loose-limbed model and decentralized graph structure allow us to incorporate information from "bottom-up" visual cues, such as limb and head detectors, into the inference process. These detectors enable automatic initialization and aid recovery from transient tracking failures. We illustrate the method by automatically tracking people in multi-view imagery using a set of calibrated cameras and present quantitative evaluation using the HumanEva dataset.

pdf publisher's site link (url) Project Page Project Page [BibTex]

pdf publisher's site link (url) Project Page Project Page [BibTex]


Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia
Point-and-Click Cursor Control With an Intracortical Neural Interface System by Humans With Tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Friehs, G. M., Black, M. J.

IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(2):193-203, April 2011 (article)

Abstract
We present a point-and-click intracortical neural interface system (NIS) that enables humans with tetraplegia to volitionally move a 2D computer cursor in any desired direction on a computer screen, hold it still and click on the area of interest. This direct brain-computer interface extracts both discrete (click) and continuous (cursor velocity) signals from a single small population of neurons in human motor cortex. A key component of this system is a multi-state probabilistic decoding algorithm that simultaneously decodes neural spiking activity and outputs either a click signal or the velocity of the cursor. The algorithm combines a linear classifier, which determines whether the user is intending to click or move the cursor, with a Kalman filter that translates the neural population activity into cursor velocity. We present a paradigm for training the multi-state decoding algorithm using neural activity observed during imagined actions. Two human participants with tetraplegia (paralysis of the four limbs) performed a closed-loop radial target acquisition task using the point-and-click NIS over multiple sessions. We quantified point-and-click performance using various human-computer interaction measurements for pointing devices. We found that participants were able to control the cursor motion accurately and click on specified targets with a small error rate (< 3% in one participant). This study suggests that signals from a small ensemble of motor cortical neurons (~40) can be used for natural point-and-click 2D cursor control of a personal computer.

pdf publishers's site pub med link (url) Project Page [BibTex]

pdf publishers's site pub med link (url) Project Page [BibTex]


A Database and Evaluation Methodology for Optical Flow
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M. J., Szeliski, R.

International Journal of Computer Vision, 92(1):1-31, March 2011 (article)

Abstract
The quantitative evaluation of optical flow algorithms by Barron et al. (1994) led to significant advances in performance. The challenges for optical flow algorithms today go beyond the datasets and evaluation methods proposed in that paper. Instead, they center on problems associated with complex natural scenes, including nonrigid motion, real sensor noise, and motion discontinuities. We propose a new set of benchmarks and evaluation methods for the next generation of optical flow algorithms. To that end, we contribute four types of data to test different aspects of optical flow algorithms: (1) sequences with nonrigid motion where the ground-truth flow is determined by tracking hidden fluorescent texture, (2) realistic synthetic sequences, (3) high frame-rate video used to study interpolation error, and (4) modified stereo sequences of static scenes. In addition to the average angular error used by Barron et al., we compute the absolute flow endpoint error, measures for frame interpolation error, improved statistics, and results at motion discontinuities and in textureless regions. In October 2007, we published the performance of several well-known methods on a preliminary version of our data to establish the current state of the art. We also made the data freely available on the web at http://vision.middlebury.edu/flow/ . Subsequently a number of researchers have uploaded their results to our website and published papers using the data. A significant improvement in performance has already been achieved. In this paper we analyze the results obtained to date and draw a large number of conclusions from them.

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]

pdf pdf from publisher Middlebury Flow Evaluation Website [BibTex]


Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array
Neural control of cursor trajectory and click by a human with tetraplegia 1000 days after implant of an intracortical microelectrode array

(J. Neural Engineering Highlights of 2011 Collection. JNE top 10 cited papers of 2010-2011.)

Simeral, J. D., Kim, S., Black, M. J., Donoghue, J. P., Hochberg, L. R.

J. of Neural Engineering, 8(2):025027, 2011 (article)

Abstract
The ongoing pilot clinical trial of the BrainGate neural interface system aims in part to assess the feasibility of using neural activity obtained from a small-scale, chronically implanted, intracortical microelectrode array to provide control signals for a neural prosthesis system. Critical questions include how long implanted microelectrodes will record useful neural signals, how reliably those signals can be acquired and decoded, and how effectively they can be used to control various assistive technologies such as computers and robotic assistive devices, or to enable functional electrical stimulation of paralyzed muscles. Here we examined these questions by assessing neural cursor control and BrainGate system characteristics on five consecutive days 1000 days after implant of a 4 × 4 mm array of 100 microelectrodes in the motor cortex of a human with longstanding tetraplegia subsequent to a brainstem stroke. On each of five prospectively-selected days we performed time-amplitude sorting of neuronal spiking activity, trained a population-based Kalman velocity decoding filter combined with a linear discriminant click state classifier, and then assessed closed-loop point-and-click cursor control. The participant performed both an eight-target center-out task and a random target Fitts metric task which was adapted from a human-computer interaction ISO standard used to quantify performance of computer input devices. The neural interface system was further characterized by daily measurement of electrode impedances, unit waveforms and local field potentials. Across the five days, spiking signals were obtained from 41 of 96 electrodes and were successfully decoded to provide neural cursor point-and-click control with a mean task performance of 91.3% ± 0.1% (mean ± s.d.) correct target acquisition. Results across five consecutive days demonstrate that a neural interface system based on an intracortical microelectrode array can provide repeatable, accurate point-and-click control of a computer interface to an individual with tetraplegia 1000 days after implantation of this sensor.

pdf pdf from publisher link (url) Project Page [BibTex]


Modelling pipeline for subject-specific arterial blood flow—A review
Modelling pipeline for subject-specific arterial blood flow—A review

Igor Sazonov, Si Yong Yeo, Rhodri Bevan, Xianghua Xie, Raoul van Loon, Perumal Nithiarasu

International Journal for Numerical Methods in Biomedical Engineering, 27(12):1868–1910, 2011 (article)

Abstract
In this paper, a robust and semi-automatic modelling pipeline for blood flow through subject-specific arterial geometries is presented. The framework developed consists of image segmentation, domain discretization (meshing) and fluid dynamics. All the three subtopics of the pipeline are explained using an example of flow through a severely stenosed human carotid artery. In the Introduction, the state-of-the-art of both image segmentation and meshing is presented in some detail, and wherever possible the advantages and disadvantages of the existing methods are analysed. Followed by this, the deformable model used for image segmentation is presented. This model is based upon a geometrical potential force (GPF), which is a function of the image. Both the GPF calculation and level set determination are explained. Following the image segmentation method, a semi-automatic meshing method used in the present study is explained in full detail. All the relevant techniques required to generate a valid domain discretization are presented. These techniques include generating a valid surface mesh, skeletonization, mesh cropping, boundary layer mesh construction and various mesh cosmetic methods that are essential for generating a high-quality domain discretization. After presenting the mesh generation procedure, how to generate flow boundary conditions for both the inlets and outlets of a geometry is explained in detail. This is followed by a brief note on the flow solver, before studying the blood flow through the carotid artery with a severe stenosis.

[BibTex]

[BibTex]


 Geometrically Induced Force Interaction for Three-Dimensional Deformable Models
Geometrically Induced Force Interaction for Three-Dimensional Deformable Models

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

IEEE Transactions on Image Processing, 20(5):1373 - 1387, 2011 (article)

Abstract
In this paper, we propose a novel 3-D deformable model that is based upon a geometrically induced external force field which can be conveniently generalized to arbitrary dimensions. This external force field is based upon hypothesized interactions between the relative geometries of the deformable model and the object boundary characterized by image gradient. The evolution of the deformable model is solved using the level set method so that topological changes are handled automatically. The relative geometrical configurations between the deformable model and the object boundaries contribute to a dynamic vector force field that changes accordingly as the deformable model evolves. The geometrically induced dynamic interaction force has been shown to greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and it gives the deformable model a high invariancy in initialization configurations. The voxel interactions across the whole image domain provide a global view of the object boundary representation, giving the external force a long attraction range. The bidirectionality of the external force field allows the new deformable model to deal with arbitrary cross-boundary initializations, and facilitates the handling of weak edges and broken boundaries. In addition, we show that by enhancing the geometrical interaction field with a nonlocal edge-preserving algorithm, the new deformable model can effectively overcome image noise. We provide a comparative study on the segmentation of various geometries with different topologies from both synthetic and real images, and show that the proposed method achieves significant improvements against existing image gradient techniques.

[BibTex]

[BibTex]


Spatial Models of Human Motion
Spatial Models of Human Motion

Soren Hauberg

University of Copenhagen, 2011 (phdthesis)

PDF [BibTex]

PDF [BibTex]


Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity
Computational flow studies in a subject-specific human upper airway using a one-equation turbulence model. Influence of the nasal cavity

Prihambodo Saksono, Perumal Nithiarasu, Igor Sazonov, Si Yong Yeo

International Journal for Numerical Methods in Biomedical Engineering, 87(1-5):96–114, 2011 (article)

Abstract
This paper focuses on the impact of including nasal cavity on airflow through a human upper respiratory tract. A computational study is carried out on a realistic geometry, reconstructed from CT scans of a subject. The geometry includes nasal cavity, pharynx, larynx, trachea and two generations of airway bifurcations below trachea. The unstructured mesh generation procedure is discussed in some length due to the complex nature of the nasal cavity structure and poor scan resolution normally available from hospitals. The fluid dynamic studies have been carried out on the geometry with and without the inclusion of the nasal cavity. The characteristic-based split scheme along with the one-equation Spalart–Allmaras turbulence model is used in its explicit form to obtain flow solutions at steady state. Results reveal that the exclusion of nasal cavity significantly influences the resulting solution. In particular, the location of recirculating flow in the trachea is dramatically different when the truncated geometry is used. In addition, we also address the differences in the solution due to imposed, equally distributed and proportionally distributed flow rates at inlets (both nares). The results show that the differences in flow pattern between the two inlet conditions are not confined to the nasal cavity and nasopharyngeal region, but they propagate down to the trachea.

[BibTex]

[BibTex]


Predicting Articulated Human Motion from Spatial Processes
Predicting Articulated Human Motion from Spatial Processes

Soren Hauberg, Kim S. Pedersen

International Journal of Computer Vision, 94, pages: 317-334, Springer Netherlands, 2011 (article)

Publishers site Code Paper site PDF [BibTex]

Publishers site Code Paper site PDF [BibTex]

2007


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

link (url) DOI [BibTex]

2007

link (url) DOI [BibTex]


Neuromotor prosthesis development
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

pdf [BibTex]

pdf [BibTex]