Header logo is ps


2008


Thumb xl jnm
A non-parametric Bayesian alternative to spike sorting

Wood, F., Black, M. J.

J. Neuroscience Methods, 173(1):1–12, August 2008 (article)

Abstract
The analysis of extra-cellular neural recordings typically begins with careful spike sorting and all analysis of the data then rests on the correctness of the resulting spike trains. In many situations this is unproblematic as experimental and spike sorting procedures often focus on well isolated units. There is evidence in the literature, however, that errors in spike sorting can occur even with carefully collected and selected data. Additionally, chronically implanted electrodes and arrays with fixed electrodes cannot be easily adjusted to provide well isolated units. In these situations, multiple units may be recorded and the assignment of waveforms to units may be ambiguous. At the same time, analysis of such data may be both scientifically important and clinically relevant. In this paper we address this issue using a novel probabilistic model that accounts for several important sources of uncertainty and error in spike sorting. In lieu of sorting neural data to produce a single best spike train, we estimate a probabilistic model of spike trains given the observed data. We show how such a distribution over spike sortings can support standard neuroscientific questions while providing a representation of uncertainty in the analysis. As a representative illustration of the approach, we analyzed primary motor cortical tuning with respect to hand movement in data recorded with a chronic multi-electrode array in non-human primates.We found that the probabilistic analysis generally agrees with human sorters but suggests the presence of tuned units not detected by humans.

pdf preprint pdf from publisher PubMed [BibTex]

2008

pdf preprint pdf from publisher PubMed [BibTex]


Thumb xl pointclickimagesmall2
Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

(J. Neural Engineering Highlights of 2008 Collection)

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Black, M. J.

J. Neural Engineering, 5, pages: 455–476, 2008 (article)

Abstract
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor’s velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Thumb xl jmiv08brownian
Brownian Warps for Non-Rigid Registration

Mads Nielsen, Peter Johansen, Andrew Jackson, Benny Lautrup, Soren Hauberg

Journal of Mathematical Imaging and Vision, 31, pages: 221-231, Springer Netherlands, 2008 (article)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


Thumb xl jmiv08theater
An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application

Soren Hauberg, Jakob Sloth

Journal of Mathematical Imaging and Vision, 31, pages: 165-170, Springer Netherlands, 2008 (article)

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]

2003


Thumb xl hedvig
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

pdf pdf from publisher code DOI [BibTex]

2003

pdf pdf from publisher code DOI [BibTex]


Thumb xl delatorreijcvteaser
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Thumb xl ijcvcoverhd
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl cviu91teaser
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

pdf [BibTex]

pdf [BibTex]

1998


Thumb xl bildschirmfoto 2012 12 06 um 10.05.20
Summarization of video-taped presentations: Automatic analysis of motion and gesture

Ju, S. X., Black, M. J., Minneman, S., Kimber, D.

IEEE Trans. on Circuits and Systems for Video Technology, 8(5):686-696, September 1998 (article)

Abstract
This paper presents an automatic system for analyzing and annotating video sequences of technical talks. Our method uses a robust motion estimation technique to detect key frames and segment the video sequence into subsequences containing a single overhead slide. The subsequences are stabilized to remove motion that occurs when the speaker adjusts their slides. Any changes remaining between frames in the stabilized sequences may be due to speaker gestures such as pointing or writing, and we use active contours to automatically track these potential gestures. Given the constrained domain, we define a simple set of actions that can be recognized based on the active contour shape and motion. The recognized actions provide an annotation of the sequence that can be used to access a condensed version of the talk from a Web page.

pdf pdf from publisher DOI [BibTex]

1998

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 12.22.18
Robust anisotropic diffusion

Black, M. J., Sapiro, G., Marimont, D., Heeger, D.

IEEE Transactions on Image Processing, 7(3):421-432, March 1998 (article)

Abstract
Relations between anisotropic diffusion and robust statistics are described in this paper. Specifically, we show that anisotropic diffusion can be seen as a robust estimation procedure that estimates a piecewise smooth image from a noisy input image. The edge-stopping; function in the anisotropic diffusion equation is closely related to the error norm and influence function in the robust estimation framework. This connection leads to a new edge-stopping; function based on Tukey's biweight robust estimator that preserves sharper boundaries than previous formulations and improves the automatic stopping of the diffusion. The robust statistical interpretation also provides a means for detecting the boundaries (edges) between the piecewise smooth regions in an image that has been smoothed with anisotropic diffusion. Additionally, we derive a relationship between anisotropic diffusion and regularization with line processes. Adding constraints on the spatial organization of the line processes allows us to develop new anisotropic diffusion equations that result in a qualitative improvement in the continuity of edges

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Thumb xl paybotteaser
PLAYBOT: A visually-guided robot for physically disabled children

Tsotsos, J. K., Verghese, G., Dickinson, S., Jenkin, M., Jepson, A., Milios, E., Nuflo, F., Stevenson, S., Black, M., Metaxas, D., Culhane, S., Ye, Y., Mann, R.

Image & Vision Computing, Special Issue on Vision for the Disabled, 16(4):275-292, 1998 (article)

Abstract
This paper overviews the PLAYBOT project, a long-term, large-scale research program whose goal is to provide a directable robot which may enable physically disabled children to access and manipulate toys. This domain is the first test domain, but there is nothing inherent in the design of PLAYBOT that prohibits its extension to other tasks. The research is guided by several important goals: vision is the primary sensor; vision is task directed; the robot must be able to visually search its environment; object and event recognition are basic capabilities; environments must be natural and dynamic; users and environments are assumed to be unpredictable; task direction and reactivity must be smoothly integrated; and safety is of high importance. The emphasis of the research has been on vision for the robot this is the most challenging research aspect and the major bottleneck to the development of intelligent robots. Since the control framework is behavior-based, the visual capabilities of PLAYBOT are described in terms of visual behaviors. Many of the components of PLAYBOT are briefly described and several examples of implemented sub-systems are shown. The paper concludes with a description of the current overall system implementation, and a complete example of PLAYBOT performing a simple task.

pdf pdf from publisher DOI [BibTex]

pdf pdf from publisher DOI [BibTex]


Thumb xl bildschirmfoto 2012 12 06 um 12.33.38
EigenTracking: Robust matching and tracking of articulated objects using a view-based representation

Black, M. J., Jepson, A.

International Journal of Computer Vision, 26(1):63-84, 1998 (article)

Abstract
This paper describes an approach for tracking rigid and articulated objects using a view-based representation. The approach builds on and extends work on eigenspace representations, robust estimation techniques, and parameterized optical flow estimation. First, we note that the least-squares image reconstruction of standard eigenspace techniques has a number of problems and we reformulate the reconstruction problem as one of robust estimation. Second we define a “subspace constancy assumption” that allows us to exploit techniques for parameterized optical flow estimation to simultaneously solve for the view of an object and the affine transformation between the eigenspace and the image. To account for large affine transformations between the eigenspace and the image we define a multi-scale eigenspace representation and a coarse-to-fine matching strategy. Finally, we use these techniques to track objects over long image sequences in which the objects simultaneously undergo both affine image motions and changes of view. In particular we use this “EigenTracking” technique to track and recognize the gestures of a moving hand.

pdf pdf from publisher video [BibTex]

1994


Thumb xl cviu
A computational and evolutionary perspective on the role of representation in computer vision

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):65-73, July 1994 (article)

Abstract
Recently, the assumed goal of computer vision, reconstructing a representation of the scene, has been critcized as unproductive and impractical. Critics have suggested that the reconstructive approach should be supplanted by a new purposive approach that emphasizes functionality and task driven perception at the cost of general vision. In response to these arguments, we claim that the recovery paradigm central to the reconstructive approach is viable, and, moreover, provides a promising framework for understanding and modeling general purpose vision in humans and machines. An examination of the goals of vision from an evolutionary perspective and a case study involving the recovery of optic flow support this hypothesis. In particular, while we acknowledge that there are instances where the purposive approach may be appropriate, these are insufficient for implementing the wide range of visual tasks exhibited by humans (the kind of flexible vision system presumed to be an end-goal of artificial intelligence). Furthermore, there are instances, such as recent work on the estimation of optic flow, where the recovery paradigm may yield useful and robust results. Thus, contrary to certain claims, the purposive approach does not obviate the need for recovery and reconstruction of flexible representations of the world.

pdf [BibTex]

1994

pdf [BibTex]


Thumb xl cviu
Reconstruction and purpose

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):113-118, July 1994 (article)

pdf [BibTex]

pdf [BibTex]