Header logo is ps


2018


Thumb xl thesis cover2
Model-based Optical Flow: Layers, Learning, and Geometry

Wulff, J.

Tuebingen University, April 2018 (phdthesis)

Abstract
The estimation of motion in video sequences establishes temporal correspondences between pixels and surfaces and allows reasoning about a scene using multiple frames. Despite being a focus of research for over three decades, computing motion, or optical flow, remains challenging due to a number of difficulties, including the treatment of motion discontinuities and occluded regions, and the integration of information from more than two frames. One reason for these issues is that most optical flow algorithms only reason about the motion of pixels on the image plane, while not taking the image formation pipeline or the 3D structure of the world into account. One approach to address this uses layered models, which represent the occlusion structure of a scene and provide an approximation to the geometry. The goal of this dissertation is to show ways to inject additional knowledge about the scene into layered methods, making them more robust, faster, and more accurate. First, this thesis demonstrates the modeling power of layers using the example of motion blur in videos, which is caused by fast motion relative to the exposure time of the camera. Layers segment the scene into regions that move coherently while preserving their occlusion relationships. The motion of each layer therefore directly determines its motion blur. At the same time, the layered model captures complex blur overlap effects at motion discontinuities. Using layers, we can thus formulate a generative model for blurred video sequences, and use this model to simultaneously deblur a video and compute accurate optical flow for highly dynamic scenes containing motion blur. Next, we consider the representation of the motion within layers. Since, in a layered model, important motion discontinuities are captured by the segmentation into layers, the flow within each layer varies smoothly and can be approximated using a low dimensional subspace. We show how this subspace can be learned from training data using principal component analysis (PCA), and that flow estimation using this subspace is computationally efficient. The combination of the layered model and the low-dimensional subspace gives the best of both worlds, sharp motion discontinuities from the layers and computational efficiency from the subspace. Lastly, we show how layered methods can be dramatically improved using simple semantics. Instead of treating all layers equally, a semantic segmentation divides the scene into its static parts and moving objects. Static parts of the scene constitute a large majority of what is shown in typical video sequences; yet, in such regions optical flow is fully constrained by the depth structure of the scene and the camera motion. After segmenting out moving objects, we consider only static regions, and explicitly reason about the structure of the scene and the camera motion, yielding much better optical flow estimates. Furthermore, computing the structure of the scene allows to better combine information from multiple frames, resulting in high accuracies even in occluded regions. For moving regions, we compute the flow using a generic optical flow method, and combine it with the flow computed for the static regions to obtain a full optical flow field. By combining layered models of the scene with reasoning about the dynamic behavior of the real, three-dimensional world, the methods presented herein push the envelope of optical flow computation in terms of robustness, speed, and accuracy, giving state-of-the-art results on benchmarks and pointing to important future research directions for the estimation of motion in natural scenes.

Official link DOI Project Page [BibTex]

2016


Thumb xl screen shot 2016 07 25 at 13.52.05
Non-parametric Models for Structured Data and Applications to Human Bodies and Natural Scenes

Lehrmann, A.

ETH Zurich, July 2016 (phdthesis)

Abstract
The purpose of this thesis is the study of non-parametric models for structured data and their fields of application in computer vision. We aim at the development of context-sensitive architectures which are both expressive and efficient. Our focus is on directed graphical models, in particular Bayesian networks, where we combine the flexibility of non-parametric local distributions with the efficiency of a global topology with bounded treewidth. A bound on the treewidth is obtained by either constraining the maximum indegree of the underlying graph structure or by introducing determinism. The non-parametric distributions in the nodes of the graph are given by decision trees or kernel density estimators. The information flow implied by specific network topologies, especially the resultant (conditional) independencies, allows for a natural integration and control of contextual information. We distinguish between three different types of context: static, dynamic, and semantic. In four different approaches we propose models which exhibit varying combinations of these contextual properties and allow modeling of structured data in space, time, and hierarchies derived thereof. The generative character of the presented models enables a direct synthesis of plausible hypotheses. Extensive experiments validate the developed models in two application scenarios which are of particular interest in computer vision: human bodies and natural scenes. In the practical sections of this work we discuss both areas from different angles and show applications of our models to human pose, motion, and segmentation as well as object categorization and localization. Here, we benefit from the availability of modern datasets of unprecedented size and diversity. Comparisons to traditional approaches and state-of-the-art research on the basis of well-established evaluation criteria allows the objective assessment of our contributions.

pdf [BibTex]

2013


Thumb xl cover3
Statistics on Manifolds with Applications to Modeling Shape Deformations

Freifeld, O.

Brown University, August 2013 (phdthesis)

Abstract
Statistical models of non-rigid deformable shape have wide application in many fi elds, including computer vision, computer graphics, and biometry. We show that shape deformations are well represented through nonlinear manifolds that are also matrix Lie groups. These pattern-theoretic representations lead to several advantages over other alternatives, including a principled measure of shape dissimilarity and a natural way to compose deformations. Moreover, they enable building models using statistics on manifolds. Consequently, such models are superior to those based on Euclidean representations. We demonstrate this by modeling 2D and 3D human body shape. Shape deformations are only one example of manifold-valued data. More generally, in many computer-vision and machine-learning problems, nonlinear manifold representations arise naturally and provide a powerful alternative to Euclidean representations. Statistics is traditionally concerned with data in a Euclidean space, relying on the linear structure and the distances associated with such a space; this renders it inappropriate for nonlinear spaces. Statistics can, however, be generalized to nonlinear manifolds. Moreover, by respecting the underlying geometry, the statistical models result in not only more e ffective analysis but also consistent synthesis. We go beyond previous work on statistics on manifolds by showing how, even on these curved spaces, problems related to modeling a class from scarce data can be dealt with by leveraging information from related classes residing in di fferent regions of the space. We show the usefulness of our approach with 3D shape deformations. To summarize our main contributions: 1) We de fine a new 2D articulated model -- more expressive than traditional ones -- of deformable human shape that factors body-shape, pose, and camera variations. Its high realism is obtained from training data generated from a detailed 3D model. 2) We defi ne a new manifold-based representation of 3D shape deformations that yields statistical deformable-template models that are better than the current state-of-the- art. 3) We generalize a transfer learning idea from Euclidean spaces to Riemannian manifolds. This work demonstrates the value of modeling manifold-valued data and their statistics explicitly on the manifold. Specifi cally, the methods here provide new tools for shape analysis.

pdf Project Page [BibTex]


Thumb xl phd
Probabilistic Models for 3D Urban Scene Understanding from Movable Platforms

Geiger, A.

Karlsruhe Institute of Technology, Karlsruhe Institute of Technology, April 2013 (phdthesis)

Abstract
Visual 3D scene understanding is an important component in autonomous driving and robot navigation. Intelligent vehicles for example often base their decisions on observations obtained from video cameras as they are cheap and easy to employ. Inner-city intersections represent an interesting but also very challenging scenario in this context: The road layout may be very complex and observations are often noisy or even missing due to heavy occlusions. While Highway navigation and autonomous driving on simple and annotated intersections have already been demonstrated successfully, understanding and navigating general inner-city crossings with little prior knowledge remains an unsolved problem. This thesis is a contribution to understanding multi-object traffic scenes from video sequences. All data is provided by a camera system which is mounted on top of the autonomous driving platform AnnieWAY. The proposed probabilistic generative model reasons jointly about the 3D scene layout as well as the 3D location and orientation of objects in the scene. In particular, the scene topology, geometry as well as traffic activities are inferred from short video sequences. The model takes advantage of monocular information in the form of vehicle tracklets, vanishing lines and semantic labels. Additionally, the benefit of stereo features such as 3D scene flow and occupancy grids is investigated. Motivated by the impressive driving capabilities of humans, no further information such as GPS, lidar, radar or map knowledge is required. Experiments conducted on 113 representative intersection sequences show that the developed approach successfully infers the correct layout in a variety of difficult scenarios. To evaluate the importance of each feature cue, experiments with different feature combinations are conducted. Additionally, the proposed method is shown to improve object detection and object orientation estimation performance.

pdf [BibTex]

pdf [BibTex]


Thumb xl jampani 13 thesis
A Study of X-Ray Image Perception for Pneumoconiosis Detection

Jampani, V.

IIIT-Hyderabad, Hyderabad, India, January 2013 (mastersthesis)

Abstract
Pneumoconiosis is an occupational lung disease caused by the inhalation of industrial dust. Despite the increasing safety measures and better work place environments, pneumoconiosis is deemed to be the most common occupational disease in the developing countries like India and China. Screening and assessment of this disease is done through radiological observation of chest x-rays. Several studies have shown the significant inter and intra reader observer variation in the diagnosis of this disease, showing the complexity of the task and importance of the expertise in diagnosis. The present study is aimed at understanding the perceptual and cognitive factors affecting the reading of chest x-rays of pneumoconiosis patients. Understanding these factors helps in developing better image acquisition systems, better training regimen for radiologists and development of better computer aided diagnostic (CAD) systems. We used an eye tracking experiment to study the various factors affecting the assessment of this diffused lung disease. Specifically, we aimed at understanding the role of expertize, contralateral symmetric (CS) information present in chest x-rays on the diagnosis and the eye movements of the observers. We also studied the inter and intra observer fixation consistency along with the role of anatomical and bottom up saliency features in attracting the gaze of observers of different expertize levels, to get better insights into the effect of bottom up and top down visual saliency on the eye movements of observers. The experiment is conducted in a room dedicated to eye tracking experiments. Participants consisting of novices (3), medical students (12), residents (4) and staff radiologists (4) were presented with good quality PA chest X-rays, and were asked to give profusion ratings for each of the 6 lung zones. Image set consisting of 17 normal full chest x-rays and 16 single lung images are shown to the participants in random order. Time of the diagnosis and the eye movements are also recorded using a remote head free eye tracker. Results indicated that Expertise and CS play important roles in the diagnosis of pneumoconiosis. Novices and medical students are slow and inefficient whereas, residents and staff are quick and efficient. A key finding of our study is that the presence of CS information alone does not help improve diagnosis as much as learning how to use the information. This learning appears to be gained from focused training and years of experience. Hence, good training for radiologists and careful observation of each lung zone may improve the quality of diagnostic results. For residents, the eye scanning strategies play an important role in using the CS information present in chest radiographs; however, in staff radiologists, peripheral vision or higher-level cognitive processes seems to play role in using the CS information. There is a reasonably good inter and intra observer fixation consistency suggesting the use of similar viewing strategies. Experience is helping the observers to develop new visual strategies based on the image content so that they can quickly and efficiently assess the disease level. First few fixations seem to be playing an important role in choosing the visual strategy, appropriate for the given image. Both inter-rib and rib regions are given equal importance by the observers. Despite reading of chest x-rays being highly task dependent, bottom up saliency is shown to have played an important role in attracting the fixations of the observers. This role of bottom up saliency seems to be more in lower expertize groups compared to that of higher expertize groups. Both bottom up and top down influence of visual fixations seems to change with time. The relative role of top down and bottom up influences of visual attention is still not completely understood and it remains the part of future work. Based on our experimental results, we have developed an extended saliency model by combining the bottom up saliency and the saliency of lung regions in a chest x-ray. This new saliency model performed significantly better than bottom-up saliency in predicting the gaze of the observers in our experiment. Even though, the model is a simple combination of bottom-up saliency maps and segmented lung masks, this demonstrates that even basic models using simple image features can predict the fixations of the observers to a good accuracy. Experimental analysis suggested that the factors affecting the reading of chest x-rays of pneumoconiosis are complex and varied. A good understanding of these factors definitely helps in the development of better radiological screening of pneumoconiosis through improved training and also through the use of improved CAD tools. The presented work is an attempt to get insights into what these factors are and how they modify the behavior of the observers.

pdf [BibTex]

pdf [BibTex]

2011


Thumb xl thesis
Spatial Models of Human Motion

Soren Hauberg

University of Copenhagen, 2011 (phdthesis)

PDF [BibTex]

2011

PDF [BibTex]