Header logo is ps


2020


AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning
AirCapRL: Autonomous Aerial Human Motion Capture Using Deep Reinforcement Learning

Tallamraju, R., Saini, N., Bonetto, E., Pabst, M., Liu, Y. T., Black, M., Ahmad, A.

IEEE Robotics and Automation Letters, IEEE Robotics and Automation Letters, 5(4):6678 - 6685, IEEE, October 2020, Also accepted and presented in the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). (article)

Abstract
In this letter, we introduce a deep reinforcement learning (DRL) based multi-robot formation controller for the task of autonomous aerial human motion capture (MoCap). We focus on vision-based MoCap, where the objective is to estimate the trajectory of body pose, and shape of a single moving person using multiple micro aerial vehicles. State-of-the-art solutions to this problem are based on classical control methods, which depend on hand-crafted system, and observation models. Such models are difficult to derive, and generalize across different systems. Moreover, the non-linearities, and non-convexities of these models lead to sub-optimal controls. In our work, we formulate this problem as a sequential decision making task to achieve the vision-based motion capture objectives, and solve it using a deep neural network-based RL method. We leverage proximal policy optimization (PPO) to train a stochastic decentralized control policy for formation control. The neural network is trained in a parallelized setup in synthetic environments. We performed extensive simulation experiments to validate our approach. Finally, real-robot experiments demonstrate that our policies generalize to real world conditions.

link (url) DOI [BibTex]

2020

link (url) DOI [BibTex]


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, 39(5), August 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

project page pdf preprint DOI [BibTex]

project page pdf preprint DOI [BibTex]


Analysis of motor development within the first year of life: 3-{D} motion tracking without markers for early detection of developmental disorders
Analysis of motor development within the first year of life: 3-D motion tracking without markers for early detection of developmental disorders

Parisi, C., Hesse, N., Tacke, U., Rocamora, S. P., Blaschek, A., Hadders-Algra, M., Black, M. J., Heinen, F., Müller-Felber, W., Schroeder, A. S.

Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz, 63, pages: 881–890, July 2020 (article)

Abstract
Children with motor development disorders benefit greatly from early interventions. An early diagnosis in pediatric preventive care (U2–U5) can be improved by automated screening. Current approaches to automated motion analysis, however, are expensive, require lots of technical support, and cannot be used in broad clinical application. Here we present an inexpensive, marker-free video analysis tool (KineMAT) for infants, which digitizes 3‑D movements of the entire body over time allowing automated analysis in the future. Three-minute video sequences of spontaneously moving infants were recorded with a commercially available depth-imaging camera and aligned with a virtual infant body model (SMIL model). The virtual image generated allows any measurements to be carried out in 3‑D with high precision. We demonstrate seven infants with different diagnoses. A selection of possible movement parameters was quantified and aligned with diagnosis-specific movement characteristics. KineMAT and the SMIL model allow reliable, three-dimensional measurements of spontaneous activity in infants with a very low error rate. Based on machine-learning algorithms, KineMAT can be trained to automatically recognize pathological spontaneous motor skills. It is inexpensive and easy to use and can be developed into a screening tool for preventive care for children.

pdf on-line w/ sup mat DOI [BibTex]

pdf on-line w/ sup mat DOI [BibTex]


Learning and Tracking the {3D} Body Shape of Freely Moving Infants from {RGB-D} sequences
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 42(10):2540-2551, 2020 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

pdf DOI poster link (url) DOI [BibTex]

pdf DOI poster link (url) DOI [BibTex]


Real Time Trajectory Prediction Using Deep Conditional Generative Models
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]

2012


An SVD-Based Approach for Ghost Detection and Removal in High Dynamic Range Images
An SVD-Based Approach for Ghost Detection and Removal in High Dynamic Range Images

Srikantha, A., Sidibe, D., Meriaudeau, F.

International Conference on Pattern Recognition (ICPR), pages: 380-383, November 2012 (article)

pdf [BibTex]

2012

pdf [BibTex]


Coupled Action Recognition and Pose Estimation from Multiple Views
Coupled Action Recognition and Pose Estimation from Multiple Views

Yao, A., Gall, J., van Gool, L.

International Journal of Computer Vision, 100(1):16-37, October 2012 (article)

publisher's site code pdf Project Page Project Page Project Page [BibTex]

publisher's site code pdf Project Page Project Page Project Page [BibTex]


{DRAPE: DRessing Any PErson}
DRAPE: DRessing Any PErson

Guan, P., Reiss, L., Hirshberg, D., Weiss, A., Black, M. J.

ACM Trans. on Graphics (Proc. SIGGRAPH), 31(4):35:1-35:10, July 2012 (article)

Abstract
We describe a complete system for animating realistic clothing on synthetic bodies of any shape and pose without manual intervention. The key component of the method is a model of clothing called DRAPE (DRessing Any PErson) that is learned from a physics-based simulation of clothing on bodies of different shapes and poses. The DRAPE model has the desirable property of "factoring" clothing deformations due to body shape from those due to pose variation. This factorization provides an approximation to the physical clothing deformation and greatly simplifies clothing synthesis. Given a parameterized model of the human body with known shape and pose parameters, we describe an algorithm that dresses the body with a garment that is customized to fit and possesses realistic wrinkles. DRAPE can be used to dress static bodies or animated sequences with a learned model of the cloth dynamics. Since the method is fully automated, it is appropriate for dressing large numbers of virtual characters of varying shape. The method is significantly more efficient than physical simulation.

YouTube pdf talk Project Page Project Page [BibTex]

YouTube pdf talk Project Page Project Page [BibTex]


Ghost Detection and Removal for High Dynamic Range Images: Recent Advances
Ghost Detection and Removal for High Dynamic Range Images: Recent Advances

Srikantha, A., Sidib’e, D.

Signal Processing: Image Communication, 27, pages: 650-662, July 2012 (article)

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Visual Servoing on Unknown Objects
Visual Servoing on Unknown Objects

Gratal, X., Romero, J., Bohg, J., Kragic, D.

Mechatronics, 22(4):423-435, Elsevier, June 2012, Visual Servoing \{SI\} (article)

Abstract
We study visual servoing in a framework of detection and grasping of unknown objects. Classically, visual servoing has been used for applications where the object to be servoed on is known to the robot prior to the task execution. In addition, most of the methods concentrate on aligning the robot hand with the object without grasping it. In our work, visual servoing techniques are used as building blocks in a system capable of detecting and grasping unknown objects in natural scenes. We show how different visual servoing techniques facilitate a complete grasping cycle.

Grasping sequence video Offline calibration video Pdf DOI [BibTex]

Grasping sequence video Offline calibration video Pdf DOI [BibTex]


Visual Orientation and Directional Selectivity Through Thalamic Synchrony
Visual Orientation and Directional Selectivity Through Thalamic Synchrony

Stanley, G., Jin, J., Wang, Y., Desbordes, G., Wang, Q., Black, M., Alonso, J.

Journal of Neuroscience, 32(26):9073-9088, June 2012 (article)

Abstract
Thalamic neurons respond to visual scenes by generating synchronous spike trains on the timescale of 10–20 ms that are very effective at driving cortical targets. Here we demonstrate that this synchronous activity contains unexpectedly rich information about fundamental properties of visual stimuli. We report that the occurrence of synchronous firing of cat thalamic cells with highly overlapping receptive fields is strongly sensitive to the orientation and the direction of motion of the visual stimulus. We show that this stimulus selectivity is robust, remaining relatively unchanged under different contrasts and temporal frequencies (stimulus velocities). A computational analysis based on an integrate-and-fire model of the direct thalamic input to a layer 4 cortical cell reveals a strong correlation between the degree of thalamic synchrony and the nonlinear relationship between cortical membrane potential and the resultant firing rate. Together, these findings suggest a novel population code in the synchronous firing of neurons in the early visual pathway that could serve as the substrate for establishing cortical representations of the visual scene.

preprint publisher's site Project Page [BibTex]

preprint publisher's site Project Page [BibTex]


Bilinear Spatiotemporal Basis Models
Bilinear Spatiotemporal Basis Models

Akhter, I., Simon, T., Khan, S., Matthews, I., Sheikh, Y.

ACM Transactions on Graphics (TOG), 31(2):17, ACM, April 2012 (article)

Abstract
A variety of dynamic objects, such as faces, bodies, and cloth, are represented in computer graphics as a collection of moving spatial landmarks. Spatiotemporal data is inherent in a number of graphics applications including animation, simulation, and object and camera tracking. The principal modes of variation in the spatial geometry of objects are typically modeled using dimensionality reduction techniques, while concurrently, trajectory representations like splines and autoregressive models are widely used to exploit the temporal regularity of deformation. In this article, we present the bilinear spatiotemporal basis as a model that simultaneously exploits spatial and temporal regularity while maintaining the ability to generalize well to new sequences. This factorization allows the use of analytical, predefined functions to represent temporal variation (e.g., B-Splines or the Discrete Cosine Transform) resulting in efficient model representation and estimation. The model can be interpreted as representing the data as a linear combination of spatiotemporal sequences consisting of shape modes oscillating over time at key frequencies. We apply the bilinear model to natural spatiotemporal phenomena, including face, body, and cloth motion data, and compare it in terms of compaction, generalization ability, predictive precision, and efficiency to existing models. We demonstrate the application of the model to a number of graphics tasks including labeling, gap-filling, denoising, and motion touch-up.

pdf project page link (url) [BibTex]

pdf project page link (url) [BibTex]


A metric for comparing the anthropomorphic motion capability of artificial hands
A metric for comparing the anthropomorphic motion capability of artificial hands

Feix, T., Romero, J., Ek, C. H., Schmiedmayer, H., Kragic, D.

IEEE RAS Transactions on Robotics, TRO, pages: 974-980, 2012 (article)

Publisher site Human Grasping Database Project [BibTex]

Publisher site Human Grasping Database Project [BibTex]


The Ankyrin 3 (ANK3) Bipolar Disorder Gene Regulates Psychiatric-related Behaviors that are Modulated by Lithium and Stress
The Ankyrin 3 (ANK3) Bipolar Disorder Gene Regulates Psychiatric-related Behaviors that are Modulated by Lithium and Stress

Leussis, M., Berry-Scott, E., Saito, M., Jhuang, H., Haan, G., Alkan, O., Luce, C., Madison, J., Sklar, P., Serre, T., Root, D., Petryshen, T.

Biological Psychiatry , 2012 (article)

Prepublication Article Abstract [BibTex]

Prepublication Article Abstract [BibTex]


Natural Metrics and Least-Committed Priors for Articulated Tracking
Natural Metrics and Least-Committed Priors for Articulated Tracking

Soren Hauberg, Stefan Sommer, Kim S. Pedersen

Image and Vision Computing, 30(6-7):453-461, Elsevier, 2012 (article)

Publishers site Code PDF [BibTex]

Publishers site Code PDF [BibTex]

2010


Decoding complete reach and grasp actions from local primary motor cortex populations
Decoding complete reach and grasp actions from local primary motor cortex populations

(Featured in Nature’s Research Highlights (Nature, Vol 466, 29 July 2010))

Vargas-Irwin, C. E., Shakhnarovich, G., Yadollahpour, P., Mislow, J., Black, M. J., Donoghue, J. P.

J. of Neuroscience, 39(29):9659-9669, July 2010 (article)

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]

2010

pdf pdf from publisher Movie 1 Movie 2 Project Page [BibTex]


Guest editorial: State of the art in image- and video-based human pose and motion estimation
Guest editorial: State of the art in image- and video-based human pose and motion estimation

Sigal, L., Black, M. J.

International Journal of Computer Vision, 87(1):1-3, March 2010 (article)

pdf from publisher [BibTex]

pdf from publisher [BibTex]


{HumanEva}: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion

Sigal, L., Balan, A., Black, M. J.

International Journal of Computer Vision, 87(1):4-27, Springer Netherlands, March 2010 (article)

Abstract
While research on articulated human motion and pose estimation has progressed rapidly in the last few years, there has been no systematic quantitative evaluation of competing methods to establish the current state of the art. We present data obtained using a hardware system that is able to capture synchronized video and ground-truth 3D motion. The resulting HumanEva datasets contain multiple subjects performing a set of predefined actions with a number of repetitions. On the order of 40,000 frames of synchronized motion capture and multi-view video (resulting in over one quarter million image frames in total) were collected at 60 Hz with an additional 37,000 time instants of pure motion capture data. A standard set of error measures is defined for evaluating both 2D and 3D pose estimation and tracking algorithms. We also describe a baseline algorithm for 3D articulated tracking that uses a relatively standard Bayesian framework with optimization in the form of Sequential Importance Resampling and Annealed Particle Filtering. In the context of this baseline algorithm we explore a variety of likelihood functions, prior models of human motion and the effects of algorithm parameters. Our experiments suggest that image observation models and motion priors play important roles in performance, and that in a multi-view laboratory environment, where initialization is available, Bayesian filtering tends to perform well. The datasets and the software are made available to the research community. This infrastructure will support the development of new articulated motion and pose estimation algorithms, will provide a baseline for the evaluation and comparison of new methods, and will help establish the current state of the art in human pose estimation and tracking.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


 Automated Home-Cage Behavioral Phenotyping of Mice
Automated Home-Cage Behavioral Phenotyping of Mice

Jhuang, H., Garrote, E., Mutch, J., Poggio, T., Steele, A., Serre, T.

Nature Communications, Nature Communications, 2010 (article)

software, demo pdf [BibTex]

software, demo pdf [BibTex]


Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration
Visual Object-Action Recognition: Inferring Object Affordances from Human Demonstration

Kjellström, H., Romero, J., Kragic, D.

Computer Vision and Image Understanding, pages: 81-90, 2010 (article)

Pdf [BibTex]

Pdf [BibTex]

2009


Fields of Experts
Fields of Experts

Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 82(2):205-29, April 2009 (article)

Abstract
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach provides a practical method for learning high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. These clique potentials are modeled using the Product-of-Experts framework that uses non-linear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field-of-Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with specialized techniques.

pdf pdf from publisher [BibTex]

2009

pdf pdf from publisher [BibTex]


Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy

Liang Zhong, Yi Su, Si Yong Yeo, Ru San Tan Dhanjoo Ghista, Ghassan Kassab

American Journal of Physiology – Heart and Circulatory Physiology, 296(3):H573-84, 2009 (article)

Abstract
Geometric remodeling of the left ventricle (LV) after myocardial infarction is associated with changes in myocardial wall stress. The objective of this study was to determine the regional curvatures and wall stress based on three-dimensional (3-D) reconstructions of the LV using MRI. Ten patients with ischemic dilated cardiomyopathy (IDCM) and 10 normal subjects underwent MRI scan. The IDCM patients also underwent delayed gadolinium-enhancement imaging to delineate the extent of myocardial infarct. Regional curvedness, local radii of curvature, and wall thickness were calculated. The percent curvedness change between end diastole and end systole was also calculated. In normal heart, a short- and long-axis two-dimensional analysis showed a 41 +/- 11% and 45 +/- 12% increase of the mean of peak systolic wall stress between basal and apical sections, respectively. However, 3-D analysis showed no significant difference in peak systolic wall stress from basal and apical sections (P = 0.298, ANOVA). LV shape differed between IDCM patients and normal subjects in several ways: LV shape was more spherical (sphericity index = 0.62 +/- 0.08 vs. 0.52 +/- 0.06, P < 0.05), curvedness at end diastole (mean for 16 segments = 0.034 +/- 0.0056 vs. 0.040 +/- 0.0071 mm(-1), P < 0.001) and end systole (mean for 16 segments = 0.037 +/- 0.0068 vs. 0.067 +/- 0.020 mm(-1), P < 0.001) was affected by infarction, and peak systolic wall stress was significantly increased at each segment in IDCM patients. The 3-D quantification of regional wall stress by cardiac MRI provides more precise evaluation of cardiac mechanics. Identification of regional curvedness and wall stresses helps delineate the mechanisms of LV remodeling in IDCM and may help guide therapeutic LV restoration.

[BibTex]

[BibTex]


A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging
A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging

Si Yong Yeo, Liang Zhong, Yi Su, Ru San Tan, Dhanjoo Ghista

Medical & Biological Engineering & Computing, 47(3):313-322, 2009 (article)

Abstract
It is believed that left ventricular (LV) regional shape is indicative of LV regional function, and cardiac pathologies are often associated with regional alterations in ventricular shape. In this article, we present a set of procedures for evaluating regional LV surface shape from anatomically accurate models reconstructed from cardiac magnetic resonance (MR) images. LV surface curvatures are computed using local surface fitting method, which enables us to assess regional LV shape and its variation. Comparisons are made between normal and diseased hearts. It is illustrated that LV surface curvatures at different regions of the normal heart are higher than those of the diseased heart. Also, the normal heart experiences a larger change in regional curvedness during contraction than the diseased heart. It is believed that with a wide range of dataset being evaluated, this approach will provide a new and efficient way of quantifying LV regional function.

link (url) [BibTex]

link (url) [BibTex]

2007


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

link (url) DOI [BibTex]

2007

link (url) DOI [BibTex]


Neuromotor prosthesis development
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

pdf [BibTex]

pdf [BibTex]


On the spatial statistics of optical flow
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Assistive technology and robotic control using {MI} ensemble-based neural interface systems in humans with tetraplegia
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]

2003


Learning the statistics of people in images and video
Learning the statistics of people in images and video

Sidenbladh, H., Black, M. J.

International Journal of Computer Vision, 54(1-3):183-209, August 2003 (article)

Abstract
This paper address the problems of modeling the appearance of humans and distinguishing human appearance from the appearance of general scenes. We seek a model of appearance and motion that is generic in that it accounts for the ways in which people's appearance varies and, at the same time, is specific enough to be useful for tracking people in natural scenes. Given a 3D model of the person projected into an image we model the likelihood of observing various image cues conditioned on the predicted locations and orientations of the limbs. These cues are taken to be steered filter responses corresponding to edges, ridges, and motion-compensated temporal differences. Motivated by work on the statistics of natural scenes, the statistics of these filter responses for human limbs are learned from training images containing hand-labeled limb regions. Similarly, the statistics of the filter responses in general scenes are learned to define a “background” distribution. The likelihood of observing a scene given a predicted pose of a person is computed, for each limb, using the likelihood ratio between the learned foreground (person) and background distributions. Adopting a Bayesian formulation allows cues to be combined in a principled way. Furthermore, the use of learned distributions obviates the need for hand-tuned image noise models and thresholds. The paper provides a detailed analysis of the statistics of how people appear in scenes and provides a connection between work on natural image statistics and the Bayesian tracking of people.

pdf pdf from publisher code DOI [BibTex]

2003

pdf pdf from publisher code DOI [BibTex]


A framework for robust subspace learning
A framework for robust subspace learning

De la Torre, F., Black, M. J.

International Journal of Computer Vision, 54(1-3):117-142, August 2003 (article)

Abstract
Many computer vision, signal processing and statistical problems can be posed as problems of learning low dimensional linear or multi-linear models. These models have been widely used for the representation of shape, appearance, motion, etc., in computer vision applications. Methods for learning linear models can be seen as a special case of subspace fitting. One draw-back of previous learning methods is that they are based on least squares estimation techniques and hence fail to account for “outliers” which are common in realistic training sets. We review previous approaches for making linear learning methods robust to outliers and present a new method that uses an intra-sample outlier process to account for pixel outliers. We develop the theory of Robust Subspace Learning (RSL) for linear models within a continuous optimization framework based on robust M-estimation. The framework applies to a variety of linear learning problems in computer vision including eigen-analysis and structure from motion. Several synthetic and natural examples are used to develop and illustrate the theory and applications of robust subspace learning in computer vision.

pdf code pdf from publisher Project Page [BibTex]

pdf code pdf from publisher Project Page [BibTex]


Guest editorial: Computational vision at {Brown}
Guest editorial: Computational vision at Brown

Black, M. J., Kimia, B.

International Journal of Computer Vision, 54(1-3):5-11, August 2003 (article)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Robust parameterized component analysis: Theory and applications to {2D} facial appearance models
Robust parameterized component analysis: Theory and applications to 2D facial appearance models

De la Torre, F., Black, M. J.

Computer Vision and Image Understanding, 91(1-2):53-71, July 2003 (article)

Abstract
Principal component analysis (PCA) has been successfully applied to construct linear models of shape, graylevel, and motion in images. In particular, PCA has been widely used to model the variation in the appearance of people's faces. We extend previous work on facial modeling for tracking faces in video sequences as they undergo significant changes due to facial expressions. Here we consider person-specific facial appearance models (PSFAM), which use modular PCA to model complex intra-person appearance changes. Such models require aligned visual training data; in previous work, this has involved a time consuming and error-prone hand alignment and cropping process. Instead, the main contribution of this paper is to introduce parameterized component analysis to learn a subspace that is invariant to affine (or higher order) geometric transformations. The automatic learning of a PSFAM given a training image sequence is posed as a continuous optimization problem and is solved with a mixture of stochastic and deterministic techniques achieving sub-pixel accuracy. We illustrate the use of the 2D PSFAM model with preliminary experiments relevant to applications including video-conferencing and avatar animation.

pdf [BibTex]

pdf [BibTex]

1996


Estimating optical flow in segmented images using variable-order parametric models with local deformations
Estimating optical flow in segmented images using variable-order parametric models with local deformations

Black, M. J., Jepson, A.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 18(10):972-986, October 1996 (article)

Abstract
This paper presents a new model for estimating optical flow based on the motion of planar regions plus local deformations. The approach exploits brightness information to organize and constrain the interpretation of the motion by using segmented regions of piecewise smooth brightness to hypothesize planar regions in the scene. Parametric flow models are estimated in these regions in a two step process which first computes a coarse fit and estimates the appropriate parameterization of the motion of the region (two, six, or eight parameters). The initial fit is refined using a generalization of the standard area-based regression approaches. Since the assumption of planarity is likely to be violated, we allow local deformations from the planar assumption in the same spirit as physically-based approaches which model shape using coarse parametric models plus local deformations. This parametric+deformation model exploits the strong constraints of parametric approaches while retaining the adaptive nature of regularization approaches. Experimental results on a variety of images indicate that the parametric+deformation model produces accurate flow estimates while the incorporation of brightness segmentation provides precise localization of motion boundaries.

pdf pdf from publisher [BibTex]

1996

pdf pdf from publisher [BibTex]


On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
On the unification of line processes, outlier rejection, and robust statistics with applications in early vision

Black, M., Rangarajan, A.

International Journal of Computer Vision , 19(1):57-92, July 1996 (article)

Abstract
The modeling of spatial discontinuities for problems such as surface recovery, segmentation, image reconstruction, and optical flow has been intensely studied in computer vision. While “line-process” models of discontinuities have received a great deal of attention, there has been recent interest in the use of robust statistical techniques to account for discontinuities. This paper unifies the two approaches. To achieve this we generalize the notion of a “line process” to that of an analog “outlier process” and show how a problem formulated in terms of outlier processes can be viewed in terms of robust statistics. We also characterize a class of robust statistical problems for which an equivalent outlier-process formulation exists and give a straightforward method for converting a robust estimation problem into an outlier-process formulation. We show how prior assumptions about the spatial structure of outliers can be expressed as constraints on the recovered analog outlier processes and how traditional continuation methods can be extended to the explicit outlier-process formulation. These results indicate that the outlier-process approach provides a general framework which subsumes the traditional line-process approaches as well as a wide class of robust estimation problems. Examples in surface reconstruction, image segmentation, and optical flow are presented to illustrate the use of outlier processes and to show how the relationship between outlier processes and robust statistics can be exploited. An appendix provides a catalog of common robust error norms and their equivalent outlier-process formulations.

pdf pdf from publisher DOI [BibTex]


The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields
The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields

Black, M. J., Anandan, P.

Computer Vision and Image Understanding, 63(1):75-104, January 1996 (article)

Abstract
Most approaches for estimating optical flow assume that, within a finite image region, only a single motion is present. This single motion assumption is violated in common situations involving transparency, depth discontinuities, independently moving objects, shadows, and specular reflections. To robustly estimate optical flow, the single motion assumption must be relaxed. This paper presents a framework based on robust estimation that addresses violations of the brightness constancy and spatial smoothness assumptions caused by multiple motions. We show how the robust estimation framework can be applied to standard formulations of the optical flow problem thus reducing their sensitivity to violations of their underlying assumptions. The approach has been applied to three standard techniques for recovering optical flow: area-based regression, correlation, and regularization with motion discontinuities. This paper focuses on the recovery of multiple parametric motion models within a region, as well as the recovery of piecewise-smooth flow fields, and provides examples with natural and synthetic image sequences.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]