Header logo is ps


2020


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

2020

pdf [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), January 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

Paper Publisher Version poster link (url) DOI [BibTex]

2006


no image
Finding directional movement representations in motor cortical neural populations using nonlinear manifold learning

WorKim, S., Simeral, J., Jenkins, O., Donoghue, J., Black, M.

World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, August 2006 (conference)

[BibTex]

2006

[BibTex]


A non-parametric {Bayesian} approach to spike sorting
A non-parametric Bayesian approach to spike sorting

Wood, F., Goldwater, S., Black, M. J.

In International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages: 1165-1169, New York, NY, August 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Predicting {3D} people from {2D} pictures
Predicting 3D people from 2D pictures

(Best Paper)

Sigal, L., Black, M. J.

In Proc. IV Conf. on Articulated Motion and DeformableObjects (AMDO), LNCS 4069, pages: 185-195, July 2006 (inproceedings)

Abstract
We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time

pdf pdf from publisher Video [BibTex]

pdf pdf from publisher Video [BibTex]


Specular flow and the recovery of surface structure
Specular flow and the recovery of surface structure

Roth, S., Black, M.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 1869-1876, New York, NY, June 2006 (inproceedings)

Abstract
In scenes containing specular objects, the image motion observed by a moving camera may be an intermixed combination of optical flow resulting from diffuse reflectance (diffuse flow) and specular reflection (specular flow). Here, with few assumptions, we formalize the notion of specular flow, show how it relates to the 3D structure of the world, and develop an algorithm for estimating scene structure from 2D image motion. Unlike previous work on isolated specular highlights we use two image frames and estimate the semi-dense flow arising from the specular reflections of textured scenes. We parametrically model the image motion of a quadratic surface patch viewed from a moving camera. The flow is modeled as a probabilistic mixture of diffuse and specular components and the 3D shape is recovered using an Expectation-Maximization algorithm. Rather than treating specular reflections as noise to be removed or ignored, we show that the specular flow provides additional constraints on scene geometry that improve estimation of 3D structure when compared with reconstruction from diffuse flow alone. We demonstrate this for a set of synthetic and real sequences of mixed specular-diffuse objects.

pdf [BibTex]

pdf [BibTex]


An adaptive appearance model approach for model-based articulated object tracking
An adaptive appearance model approach for model-based articulated object tracking

Balan, A., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 1, pages: 758-765, New York, NY, June 2006 (inproceedings)

Abstract
The detection and tracking of three-dimensional human body models has progressed rapidly but successful approaches typically rely on accurate foreground silhouettes obtained using background segmentation. There are many practical applications where such information is imprecise. Here we develop a new image likelihood function based on the visual appearance of the subject being tracked. We propose a robust, adaptive, appearance model based on the Wandering-Stable-Lost framework extended to the case of articulated body parts. The method models appearance using a mixture model that includes an adaptive template, frame-to-frame matching and an outlier process. We employ an annealed particle filtering algorithm for inference and take advantage of the 3D body model to predict self occlusion and improve pose estimation accuracy. Quantitative tracking results are presented for a walking sequence with a 180 degree turn, captured with four synchronized and calibrated cameras and containing significant appearance changes and self-occlusion in each view.

pdf [BibTex]

pdf [BibTex]


Measure locally, reason globally: Occlusion-sensitive articulated pose estimation
Measure locally, reason globally: Occlusion-sensitive articulated pose estimation

Sigal, L., Black, M. J.

In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, 2, pages: 2041-2048, New York, NY, June 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Statistical analysis of the non-stationarity of neural population codes
Statistical analysis of the non-stationarity of neural population codes

Kim, S., Wood, F., Fellows, M., Donoghue, J. P., Black, M. J.

In BioRob 2006, The first IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pages: 295-299, Pisa, Italy, Febuary 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
How to choose the covariance for Gaussian process regression independently of the basis

Franz, M., Gehler, P.

In Proceedings of the Workshop Gaussian Processes in Practice, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


The rate adapting poisson model for information retrieval and object recognition
The rate adapting poisson model for information retrieval and object recognition

Gehler, P. V., Holub, A. D., Welling, M.

In Proceedings of the 23rd international conference on Machine learning, pages: 337-344, ICML ’06, ACM, New York, NY, USA, 2006 (inproceedings)

project page pdf DOI [BibTex]

project page pdf DOI [BibTex]


Implicit Wiener Series, Part II: Regularised estimation
Implicit Wiener Series, Part II: Regularised estimation

Gehler, P., Franz, M.

(148), Max Planck Institute, 2006 (techreport)

pdf [BibTex]


Tracking complex objects using graphical object models
Tracking complex objects using graphical object models

Sigal, L., Zhu, Y., Comaniciu, D., Black, M. J.

In International Workshop on Complex Motion, LNCS 3417, pages: 223-234, Springer-Verlag, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


{HumanEva}: Synchronized video and motion capture dataset for evaluation of articulated human motion
HumanEva: Synchronized video and motion capture dataset for evaluation of articulated human motion

Sigal, L., Black, M. J.

(CS-06-08), Brown University, Department of Computer Science, 2006 (techreport)

pdf abstract [BibTex]

pdf abstract [BibTex]


Bayesian population decoding of motor cortical activity using a {Kalman} filter
Bayesian population decoding of motor cortical activity using a Kalman filter

Wu, W., Gao, Y., Bienenstock, E., Donoghue, J. P., Black, M. J.

Neural Computation, 18(1):80-118, 2006 (article)

Abstract
Effective neural motor prostheses require a method for decoding neural activity representing desired movement. In particular, the accurate reconstruction of a continuous motion signal is necessary for the control of devices such as computer cursors, robots, or a patient's own paralyzed limbs. For such applications, we developed a real-time system that uses Bayesian inference techniques to estimate hand motion from the firing rates of multiple neurons. In this study, we used recordings that were previously made in the arm area of primary motor cortex in awake behaving monkeys using a chronically implanted multielectrode microarray. Bayesian inference involves computing the posterior probability of the hand motion conditioned on a sequence of observed firing rates; this is formulated in terms of the product of a likelihood and a prior. The likelihood term models the probability of firing rates given a particular hand motion. We found that a linear gaussian model could be used to approximate this likelihood and could be readily learned from a small amount of training data. The prior term defines a probabilistic model of hand kinematics and was also taken to be a linear gaussian model. Decoding was performed using a Kalman filter, which gives an efficient recursive method for Bayesian inference when the likelihood and prior are linear and gaussian. In off-line experiments, the Kalman filter reconstructions of hand trajectory were more accurate than previously reported results. The resulting decoding algorithm provides a principled probabilistic model of motor-cortical coding, decodes hand motion in real time, provides an estimate of uncertainty, and is straightforward to implement. Additionally the formulation unifies and extends previous models of neural coding while providing insights into the motor-cortical code.

pdf preprint pdf from publisher abstract [BibTex]

pdf preprint pdf from publisher abstract [BibTex]


Hierarchical Approach for Articulated {3D} Pose-Estimation and Tracking (extended abstract)
Hierarchical Approach for Articulated 3D Pose-Estimation and Tracking (extended abstract)

Sigal, L., Black, M. J.

In Learning, Representation and Context for Human Sensing in Video Workshop (in conjunction with CVPR), 2006 (inproceedings)

pdf poster [BibTex]

pdf poster [BibTex]


Nonlinear physically-based models for decoding motor-cortical population activity
Nonlinear physically-based models for decoding motor-cortical population activity

Shakhnarovich, G., Kim, S., Black, M. J.

In Advances in Neural Information Processing Systems 19, NIPS-2006, pages: 1257-1264, MIT Press, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
A comparison of decoding models for imagined motion from human motor cortex

Kim, S., Simeral, J., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.11. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]


Denoising archival films using a learned {Bayesian} model
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

In Int. Conf. on Image Processing, ICIP, pages: 2641-2644, Atlanta, 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Efficient belief propagation with learned higher-order {Markov} random fields
Efficient belief propagation with learned higher-order Markov random fields

Lan, X., Roth, S., Huttenlocher, D., Black, M. J.

In European Conference on Computer Vision, ECCV, II, pages: 269-282, Graz, Austria, 2006 (inproceedings)

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


Products of ``Edge-perts''
Products of “Edge-perts”

Gehler, P., Welling, M.

In Advances in Neural Information Processing Systems 18, pages: 419-426, (Editors: Weiss, Y. and Sch"olkopf, B. and Platt, J.), MIT Press, Cambridge, MA, 2006 (incollection)

pdf [BibTex]

pdf [BibTex]


no image
Modeling neural control of physically realistic movement

Shaknarovich, G., Kim, S., Donoghue, J. P., Hocherberg, L. R., Friehs, G., Mukand, J. A., Chen, D., Black, M. J.

Program No. 256.12. 2006 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Atlanta, GA, 2006, Online (conference)

[BibTex]

[BibTex]

2001


Dynamic coupled component analysis
Dynamic coupled component analysis

De la Torre, F., Black, M. J.

In IEEE Proc. Computer Vision and Pattern Recognition, CVPR’01, 2, pages: 643-650, IEEE, Kauai, Hawaii, December 2001 (inproceedings)

pdf [BibTex]

2001

pdf [BibTex]


Robust principal component analysis for computer vision
Robust principal component analysis for computer vision

De la Torre, F., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 362-369, Vancouver, BC, USA, 2001 (inproceedings)

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Learning image statistics for {Bayesian} tracking
Learning image statistics for Bayesian tracking

Sidenbladh, H., Black, M. J.

In Int. Conf. on Computer Vision, ICCV-2001, II, pages: 709-716, Vancouver, BC, USA, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Encoding/decoding of arm kinematics from simultaneously recorded MI neurons

Gao, Y., Bienenstock, E., Black, M., Shoham, S., Serruya, M., Donoghue, J.

Society for Neuroscience Abst. Vol. 27, Program No. 572.14, 2001 (conference)

abstract [BibTex]

abstract [BibTex]


Learning and tracking cyclic human motion
Learning and tracking cyclic human motion

Ormoneit, D., Sidenbladh, H., Black, M. J., Hastie, T.

In Advances in Neural Information Processing Systems 13, NIPS, pages: 894-900, (Editors: Leen, Todd K. and Dietterich, Thomas G. and Tresp, Volker), The MIT Press, 2001 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Robust estimation of multiple surface shapes from occluded textures
Robust estimation of multiple surface shapes from occluded textures

Black, M. J., Rosenholtz, R.

In International Symposium on Computer Vision, pages: 485-490, Miami, FL, November 1995 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
The PLAYBOT Project

Tsotsos, J. K., Dickinson, S., Jenkin, M., Milios, E., Jepson, A., Down, B., Amdur, E., Stevenson, S., Black, M., Metaxas, D., Cooperstock, J., Culhane, S., Nuflo, F., Verghese, G., Wai, W., Wilkes, D., Ye, Y.

In Proc. IJCAI Workshop on AI Applications for Disabled People, Montreal, August 1995 (inproceedings)

abstract [BibTex]

abstract [BibTex]


Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion
Recognizing facial expressions under rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In International Workshop on Automatic Face- and Gesture-Recognition, Zurich, July 1995 (inproceedings)

video abstract [BibTex]

video abstract [BibTex]


Image segmentation using robust mixture models
Image segmentation using robust mixture models

Black, M. J., Jepson, A. D.

US Pat. 5,802,203, June 1995 (patent)

pdf on-line at USPTO [BibTex]


Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion
Tracking and recognizing rigid and non-rigid facial motions using local parametric models of image motion

Black, M. J., Yacoob, Y.

In Fifth International Conf. on Computer Vision, ICCV’95, pages: 347-381, Boston, MA, June 1995 (inproceedings)

Abstract
This paper explores the use of local parametrized models of image motion for recovering and recognizing the non-rigid and articulated motion of human faces. Parametric flow models (for example affine) are popular for estimating motion in rigid scenes. We observe that within local regions in space and time, such models not only accurately model non-rigid facial motions but also provide a concise description of the motion in terms of a small number of parameters. These parameters are intuitively related to the motion of facial features during facial expressions and we show how expressions such as anger, happiness, surprise, fear, disgust and sadness can be recognized from the local parametric motions in the presence of significant head motion. The motion tracking and expression recognition approach performs with high accuracy in extensive laboratory experiments involving 40 subjects as well as in television and movie sequences.

pdf video publisher site [BibTex]

pdf video publisher site [BibTex]


no image
A computational model for shape from texture for multiple textures

Black, M. J., Rosenholtz, R.

Investigative Ophthalmology and Visual Science Supplement, Vol. 36, No. 4, pages: 2202, March 1995 (conference)

abstract [BibTex]

abstract [BibTex]

1994


Estimating multiple independent motions in segmented images using parametric models with local deformations
Estimating multiple independent motions in segmented images using parametric models with local deformations

Black, M. J., Jepson, A.

In Workshop on Non-rigid and Articulate Motion, pages: 220-227, Austin, Texas, November 1994 (inproceedings)

pdf abstract [BibTex]

1994

pdf abstract [BibTex]


Time to contact from active tracking of motion boundaries
Time to contact from active tracking of motion boundaries

Ju, X., Black, M. J.

In Intelligent Robots and Computer Vision XIII: 3D Vision, Product Inspection, and Active Vision, pages: 26-37, Proc. SPIE 2354, Boston, Massachusetts, November 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


A computational and evolutionary perspective on the role of representation in computer vision
A computational and evolutionary perspective on the role of representation in computer vision

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):65-73, July 1994 (article)

Abstract
Recently, the assumed goal of computer vision, reconstructing a representation of the scene, has been critcized as unproductive and impractical. Critics have suggested that the reconstructive approach should be supplanted by a new purposive approach that emphasizes functionality and task driven perception at the cost of general vision. In response to these arguments, we claim that the recovery paradigm central to the reconstructive approach is viable, and, moreover, provides a promising framework for understanding and modeling general purpose vision in humans and machines. An examination of the goals of vision from an evolutionary perspective and a case study involving the recovery of optic flow support this hypothesis. In particular, while we acknowledge that there are instances where the purposive approach may be appropriate, these are insufficient for implementing the wide range of visual tasks exhibited by humans (the kind of flexible vision system presumed to be an end-goal of artificial intelligence). Furthermore, there are instances, such as recent work on the estimation of optic flow, where the recovery paradigm may yield useful and robust results. Thus, contrary to certain claims, the purposive approach does not obviate the need for recovery and reconstruction of flexible representations of the world.

pdf [BibTex]

pdf [BibTex]


Reconstruction and purpose
Reconstruction and purpose

Tarr, M. J., Black, M. J.

CVGIP: Image Understanding, 60(1):113-118, July 1994 (article)

pdf [BibTex]

pdf [BibTex]


The outlier process: Unifying line processes and robust statistics
The outlier process: Unifying line processes and robust statistics

Black, M., Rangarajan, A.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR’94, pages: 15-22, Seattle, WA, June 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]


Recursive non-linear estimation of discontinuous flow fields
Recursive non-linear estimation of discontinuous flow fields

Black, M.

In Proc. Third European Conf. on Computer Vision, ECCV’94,, pages: 138-145, LNCS 800, Springer Verlag, Sweden, May 1994 (inproceedings)

pdf abstract [BibTex]

pdf abstract [BibTex]

1990


A model for the detection of motion over time
A model for the detection of motion over time

Black, M. J., Anandan, P.

In Proc. Int. Conf. on Computer Vision, ICCV-90, pages: 33-37, Osaka, Japan, December 1990 (inproceedings)

Abstract
We propose a model for the recovery of visual motion fields from image sequences. Our model exploits three constraints on the motion of a patch in the environment: i) Data Conservation: the intensity structure corresponding to an environmental surface patch changes gradually over time; ii) Spatial Coherence: since surfaces have spatial extent neighboring points have similar motions; iii) Temporal Coherence: the direction and velocity of motion for a surface patch changes gradually. The formulation of the constraints takes into account the possibility of multiple motions at a particular location. We also present a highly parallel computational model for realizing these constraints in which computation occurs locally, knowledge about the motion increases over time, and occlusion and disocclusion boundaries are estimated. An implementation of the model using a stochastic temporal updating scheme is described. Experiments with both synthetic and real imagery are presented.

pdf [BibTex]

1990

pdf [BibTex]


Constraints for the early detection of discontinuity from motion
Constraints for the early detection of discontinuity from motion

Black, M. J., Anandan, P.

In Proc. National Conf. on Artificial Intelligence, AAAI-90, pages: 1060-1066, Boston, MA, 1990 (inproceedings)

Abstract
Surface discontinuities are detected in a sequence of images by exploiting physical constraints at early stages in the processing of visual motion. To achieve accurate early discontinuity detection we exploit five physical constraints on the presence of discontinuities: i) the shape of the sum of squared differences (SSD) error surface in the presence of surface discontinuities; ii) the change in the shape of the SSD surface due to relative surface motion; iii) distribution of optic flow in a neighborhood of a discontinuity; iv) spatial consistency of discontinuities; V) temporal consistency of discontinuities. The constraints are described, and experimental results on sequences of real and synthetic images are presented. The work has applications in the recovery of environmental structure from motion and in the generation of dense optic flow fields.

pdf [BibTex]

pdf [BibTex]