Header logo is ps


2020


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, September 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

project page pdf preprint [BibTex]

2020

project page pdf preprint [BibTex]


{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

[BibTex]

[BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

arxiv project page code [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

Code PDF [BibTex]

Code PDF [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

arXiv code video supplemental video [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

Paper Publisher Version poster link (url) DOI [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]

arXiv [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

pdf [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]

2008


Learning Optical Flow
Learning Optical Flow

Sun, D., Roth, S., Lewis, J., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 83-97, LNCS, (Editors: Forsyth, D. and Torr, P. and Zisserman, A.), Springer-Verlag, October 2008 (inproceedings)

Abstract
Assumptions of brightness constancy and spatial smoothness underlie most optical flow estimation methods. In contrast to standard heuristic formulations, we learn a statistical model of both brightness constancy error and the spatial properties of optical flow using image sequences with associated ground truth flow fields. The result is a complete probabilistic model of optical flow. Specifically, the ground truth enables us to model how the assumption of brightness constancy is violated in naturalistic sequences, resulting in a probabilistic model of "brightness inconstancy". We also generalize previous high-order constancy assumptions, such as gradient constancy, by modeling the constancy of responses to various linear filters in a high-order random field framework. These filters are free variables that can be learned from training data. Additionally we study the spatial structure of the optical flow and how motion boundaries are related to image intensity boundaries. Spatial smoothness is modeled using a Steerable Random Field, where spatial derivatives of the optical flow are steered by the image brightness structure. These models provide a statistical motivation for previous methods and enable the learning of all parameters from training data. All proposed models are quantitatively compared on the Middlebury flow dataset.

pdf Springerlink version [BibTex]

2008

pdf Springerlink version [BibTex]


GNU Octave Manual Version 3
GNU Octave Manual Version 3

John W. Eaton, David Bateman, Soren Hauberg

Network Theory Ltd., October 2008 (book)

Publishers site GNU Octave [BibTex]

Publishers site GNU Octave [BibTex]


no image
Probabilistic Roadmap Method and Real Time Gait Changing Technique Implementation for Travel Time Optimization on a Designed Six-legged Robot

Ahmad, A., Dhang, N.

In pages: 1-5, October 2008 (inproceedings)

Abstract
This paper presents design and development of a six legged robot with a total of 12 degrees of freedom, two in each limb and then an implementation of 'obstacle and undulated terrain-based' probabilistic roadmap method for motion planning of this hexaped which is able to negotiate large undulations as obstacles. The novelty in this implementation is that, it doesnt require the complete view of the robot's configuration space at any given time during the traversal. It generates a map of the area that is in visibility range and finds the best suitable point in that field of view to make it as the next node of the algorithm. A particular category of undulations which are small enough are automatically 'run-over' as a part of the terrain and not considered as obstacles. The traversal between the nodes is optimized by taking the shortest path and the most optimum gait at that instance which the hexaped can assume. This is again a novel approach to have a real time gait changing technique to optimize the travel time. The hexaped limb can swing in the robot's X-Y plane and the lower link of the limb can move in robot's Z plane by an implementation of a four-bar mechanism. A GUI based server 'Yellow Ladybird' eventually which is the name of the hexaped, is made for real time monitoring and communicating to it the final destination co-ordinates.

link (url) [BibTex]


The naked truth: Estimating body shape under clothing,
The naked truth: Estimating body shape under clothing,

Balan, A., Black, M. J.

In European Conf. on Computer Vision, ECCV, 5304, pages: 15-29, LNCS, (Editors: D. Forsyth and P. Torr and A. Zisserman), Springer-Verlag, Marseilles, France, October 2008 (inproceedings)

Abstract
We propose a method to estimate the detailed 3D shape of a person from images of that person wearing clothing. The approach exploits a model of human body shapes that is learned from a database of over 2000 range scans. We show that the parameters of this shape model can be recovered independently of body pose. We further propose a generalization of the visual hull to account for the fact that observed silhouettes of clothed people do not provide a tight bound on the true 3D shape. With clothed subjects, different poses provide different constraints on the possible underlying 3D body shape. We consequently combine constraints across pose to more accurately estimate 3D body shape in the presence of occluding clothing. Finally we use the recovered 3D shape to estimate the gender of subjects and then employ gender-specific body models to refine our shape estimates. Results on a novel database of thousands of images of clothed and "naked" subjects, as well as sequences from the HumanEva dataset, suggest the method may be accurate enough for biometric shape analysis in video.

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]

pdf pdf with higher quality images Springerlink version YouTube video on applications data slides [BibTex]


Infinite Kernel Learning
Infinite Kernel Learning

Gehler, P., Nowozin, S.

(178), Max Planck Institute, octomber 2008 (techreport)

project page pdf [BibTex]

project page pdf [BibTex]


A non-parametric {Bayesian} alternative to spike sorting
A non-parametric Bayesian alternative to spike sorting

Wood, F., Black, M. J.

J. Neuroscience Methods, 173(1):1–12, August 2008 (article)

Abstract
The analysis of extra-cellular neural recordings typically begins with careful spike sorting and all analysis of the data then rests on the correctness of the resulting spike trains. In many situations this is unproblematic as experimental and spike sorting procedures often focus on well isolated units. There is evidence in the literature, however, that errors in spike sorting can occur even with carefully collected and selected data. Additionally, chronically implanted electrodes and arrays with fixed electrodes cannot be easily adjusted to provide well isolated units. In these situations, multiple units may be recorded and the assignment of waveforms to units may be ambiguous. At the same time, analysis of such data may be both scientifically important and clinically relevant. In this paper we address this issue using a novel probabilistic model that accounts for several important sources of uncertainty and error in spike sorting. In lieu of sorting neural data to produce a single best spike train, we estimate a probabilistic model of spike trains given the observed data. We show how such a distribution over spike sortings can support standard neuroscientific questions while providing a representation of uncertainty in the analysis. As a representative illustration of the approach, we analyzed primary motor cortical tuning with respect to hand movement in data recorded with a chronic multi-electrode array in non-human primates.We found that the probabilistic analysis generally agrees with human sorters but suggests the presence of tuned units not detected by humans.

pdf preprint pdf from publisher PubMed [BibTex]

pdf preprint pdf from publisher PubMed [BibTex]


Dynamic time warping for binocular hand tracking and reconstruction
Dynamic time warping for binocular hand tracking and reconstruction

Romero, J., Kragic, D., Kyrki, V., Argyros, A.

In IEEE International Conference on Robotics and Automation,ICRA, pages: 2289 -2294, May 2008 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia
Neural control of computer cursor velocity by decoding motor cortical spiking activity in humans with tetraplegia

(J. Neural Engineering Highlights of 2008 Collection)

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Black, M. J.

J. Neural Engineering, 5, pages: 455–476, 2008 (article)

Abstract
Computer-mediated connections between human motor cortical neurons and assistive devices promise to improve or restore lost function in people with paralysis. Recently, a pilot clinical study of an intracortical neural interface system demonstrated that a tetraplegic human was able to obtain continuous two-dimensional control of a computer cursor using neural activity recorded from his motor cortex. This control, however, was not sufficiently accurate for reliable use in many common computer control tasks. Here, we studied several central design choices for such a system including the kinematic representation for cursor movement, the decoding method that translates neuronal ensemble spiking activity into a control signal and the cursor control task used during training for optimizing the parameters of the decoding method. In two tetraplegic participants, we found that controlling a cursor’s velocity resulted in more accurate closed-loop control than controlling its position directly and that cursor velocity control was achieved more rapidly than position control. Control quality was further improved over conventional linear filters by using a probabilistic method, the Kalman filter, to decode human motor cortical activity. Performance assessment based on standard metrics used for the evaluation of a wide range of pointing devices demonstrated significantly improved cursor control with velocity rather than position decoding.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Incremental nonparametric {Bayesian} regression
Incremental nonparametric Bayesian regression

Wood, F., Grollman, D. H., Heller, K. A., Jenkins, O. C., Black, M. J.

(CS-08-07), Brown University, Department of Computer Science, 2008 (techreport)

pdf [BibTex]

pdf [BibTex]


Brownian Warps for Non-Rigid Registration
Brownian Warps for Non-Rigid Registration

Mads Nielsen, Peter Johansen, Andrew Jackson, Benny Lautrup, Soren Hauberg

Journal of Mathematical Imaging and Vision, 31, pages: 221-231, Springer Netherlands, 2008 (article)

Publishers site PDF [BibTex]

Publishers site PDF [BibTex]


Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects
Simultaneous Visual Recognition of Manipulation Actions and Manipulated Objects

Kjellström, H., Romero, J., Martinez, D., Kragic, D.

In European Conference on Computer Vision, ECCV, pages: 336-349, 2008 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Tuning analysis of motor cortical neurons in a person with paralysis during performance of visually instructed cursor control tasks

Kim, S., Simeral, J. D., Hochberg, L. R., Truccolo, W., Donoghue, J., Friehs, G. M., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]


Infinite Kernel Learning
Infinite Kernel Learning

Gehler, P., Nowozin, S.

In Proceedings of NIPS 2008 Workshop on "Kernel Learning: Automatic Selection of Optimal Kernels", 2008 (inproceedings)

project page pdf [BibTex]

project page pdf [BibTex]


 An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application
An Efficient Algorithm for Modelling Duration in Hidden Markov Models, with a Dramatic Application

Soren Hauberg, Jakob Sloth

Journal of Mathematical Imaging and Vision, 31, pages: 165-170, Springer Netherlands, 2008 (article)

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]


Visual Recognition of Grasps for Human-to-Robot Mapping
Visual Recognition of Grasps for Human-to-Robot Mapping

Kjellström, H., Romero, J., Kragic, D.

In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, pages: 3192-3199, 2008 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
More than two years of intracortically-based cursor control via a neural interface system

Hochberg, L. R., Simeral, J. D., Kim, S., Stein, J., Friehs, G. M., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]


no image
Decoding of reach and grasp from MI population spiking activity using a low-dimensional model of hand and arm posture

Yadollahpour, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]


no image
Neural activity in the motor cortex of humans with tetraplegia

Donoghue, J., Simeral, J., Black, M., Kim, S., Truccolo, W., Hochberg, L.

AREADNE Research in Encoding And Decoding of Neural Ensembles, June, Santorini, Greece, 2008 (conference)

[BibTex]

[BibTex]


Combined discriminative and generative articulated pose and non-rigid shape estimation
Combined discriminative and generative articulated pose and non-rigid shape estimation

Sigal, L., Balan, A., Black, M. J.

In Advances in Neural Information Processing Systems 20, NIPS-2007, pages: 1337–1344, MIT Press, 2008 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Reconstructing reach and grasp actions using neural population activity from Primary Motor Cortex

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2008 Abstract Viewer and Itinerary Planner, Society for Neuroscience, Washington, DC, 2008, Online (conference)

[BibTex]

[BibTex]


Nonrigid Structure from Motion in Trajectory Space
Nonrigid Structure from Motion in Trajectory Space

Akhter, I., Sheikh, Y., Khan, S., Kanade, T.

In Neural Information Processing Systems, 1(2):41-48, 2008 (inproceedings)

Abstract
Existing approaches to nonrigid structure from motion assume that the instantaneous 3D shape of a deforming object is a linear combination of basis shapes, which have to be estimated anew for each video sequence. In contrast, we propose that the evolving 3D structure be described by a linear combination of basis trajectories. The principal advantage of this approach is that we do not need to estimate any basis vectors during computation. We show that generic bases over trajectories, such as the Discrete Cosine Transform (DCT) basis, can be used to compactly describe most real motions. This results in a significant reduction in unknowns, and corresponding stability in estimation. We report empirical performance, quantitatively using motion capture data, and qualitatively on several video sequences exhibiting nonrigid motions including piece-wise rigid motion, partially nonrigid motion (such as a facial expression), and highly nonrigid motion (such as a person dancing).

pdf project page [BibTex]

pdf project page [BibTex]

2007


A Database and Evaluation Methodology for Optical Flow
A Database and Evaluation Methodology for Optical Flow

Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

pdf [BibTex]

2007

pdf [BibTex]


Shining a light on human pose: On shadows, shading and the estimation of pose and shape,
Shining a light on human pose: On shadows, shading and the estimation of pose and shape,

Balan, A., Black, M. J., Haussecker, H., Sigal, L.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, October 2007 (inproceedings)

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Ensemble spiking activity as a source of cortical control signals in individuals with tetraplegia

Simeral, J. D., Kim, S. P., Black, M. J., Donoghue, J. P., Hochberg, L. R.

Biomedical Engineering Society, BMES, september 2007 (conference)

[BibTex]

[BibTex]


Detailed human shape and pose from images
Detailed human shape and pose from images

Balan, A., Sigal, L., Black, M. J., Davis, J., Haussecker, H.

In IEEE Conf. on Computer Vision and Pattern Recognition, CVPR, pages: 1-8, Minneapolis, June 2007 (inproceedings)

Abstract
Much of the research on video-based human motion capture assumes the body shape is known a priori and is represented coarsely (e.g. using cylinders or superquadrics to model limbs). These body models stand in sharp contrast to the richly detailed 3D body models used by the graphics community. Here we propose a method for recovering such models directly from images. Specifically, we represent the body using a recently proposed triangulated mesh model called SCAPE which employs a low-dimensional, but detailed, parametric model of shape and pose-dependent deformations that is learned from a database of range scans of human bodies. Previous work showed that the parameters of the SCAPE model could be estimated from marker-based motion capture data. Here we go further to estimate the parameters directly from image data. We define a cost function between image observations and a hypothesized mesh and formulate the problem as optimization over the body shape and pose parameters using stochastic search. Our results show that such rich generative models enable the automatic recovery of detailed human shape and pose from images.

pdf YouTube [BibTex]

pdf YouTube [BibTex]


no image
Learning static Gestalt laws through dynamic experience

Ostrovsky, Y., Wulff, J., Sinha, P.

Journal of Vision, 7(9):315-315, ARVO, June 2007 (article)

Abstract
The Gestalt laws (Wertheimer 1923) are widely regarded as the rules that help us parse the world into objects. However, it is unclear as to how these laws are acquired by an infant's visual system. Classically, these “laws” have been presumed to be innate (Kellman and Spelke 1983). But, more recent work in infant development, showing the protracted time-course over which these grouping principles emerge (e.g., Johnson and Aslin 1995; Craton 1996), suggests that visual experience might play a role in their genesis. Specifically, our studies of patients with late-onset vision (Project Prakash; VSS 2006) and evidence from infant development both point to an early role of common motion cues for object grouping. Here we explore the possibility that the privileged status of motion in the developmental timeline is not happenstance, but rather serves to bootstrap the learning of static Gestalt cues. Our approach involves computational analyses of real-world motion sequences to investigate whether primitive optic flow information is correlated with static figural cues that could eventually come to serve as proxies for grouping in the form of Gestalt principles. We calculated local optic flow maps and then examined how similarity of motion across image patches co-varied with similarity of certain figural properties in static frames. Results indicate that patches with similar motion are much more likely to have similar luminance, color, and orientation as compared to patches with dissimilar motion vectors. This regularity suggests that, in principle, common motion extracted from dynamic visual experience can provide enough information to bootstrap region grouping based on luminance and color and contour continuation mechanisms in static scenes. These observations, coupled with the cited experimental studies, lend credence to the hypothesis that static Gestalt laws might be learned through a bootstrapping process based on early dynamic experience.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Decoding grasp aperture from motor-cortical population activity
Decoding grasp aperture from motor-cortical population activity

Artemiadis, P., Shakhnarovich, G., Vargas-Irwin, C., Donoghue, J. P., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 518-521, May 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia
Multi-state decoding of point-and-click control signals from motor cortical activity in a human with tetraplegia

Kim, S., Simeral, J., Hochberg, L., Donoghue, J. P., Friehs, G., Black, M. J.

In The 3rd International IEEE EMBS Conference on Neural Engineering, pages: 486-489, May 2007 (inproceedings)

Abstract
Basic neural-prosthetic control of a computer cursor has been recently demonstrated by Hochberg et al. [1] using the BrainGate system (Cyberkinetics Neurotechnology Systems, Inc.). While these results demonstrate the feasibility of intracortically-driven prostheses for humans with paralysis, a practical cursor-based computer interface requires more precise cursor control and the ability to “click” on areas of interest. Here we present a practical point and click device that decodes both continuous states (e.g. cursor kinematics) and discrete states (e.g. click state) from single neural population in human motor cortex. We describe a probabilistic multi-state decoder and the necessary training paradigms that enable point and click cursor control by a human with tetraplegia using an implanted microelectrode array. We present results from multiple recording sessions and quantify the point and click performance.

pdf [BibTex]

pdf [BibTex]


Neuromotor prosthesis development
Neuromotor prosthesis development

Donoghue, J., Hochberg, L., Nurmikko, A., Black, M., Simeral, J., Friehs, G.

Medicine & Health Rhode Island, 90(1):12-15, January 2007 (article)

Abstract
Article describes a neuromotor prosthesis (NMP), in development at Brown University, that records human brain signals, decodes them, and transforms them into movement commands. An NMP is described as a system consisting of a neural interface, a decoding system, and a user interface, also called an effector; a closed-loop system would be completed by a feedback signal from the effector to the brain. The interface is based on neural spiking, a source of information-rich, rapid, complex control signals from the nervous system. The NMP described, named BrainGate, consists of a match-head sized platform with 100 thread-thin electrodes implanted just into the surface of the motor cortex where commands to move the hand emanate. Neural signals are decoded by a rack of computers that displays the resultant output as the motion of a cursor on a computer monitor. While computer cursor motion represents a form of virtual device control, this same command signal could be routed to a device to command motion of paralyzed muscles or the actions of prosthetic limbs. The researchers’ overall goal is the development of a fully implantable, wireless multi-neuron sensor for broad research, neural prosthetic, and human neurodiagnostic applications.

pdf [BibTex]

pdf [BibTex]


On the spatial statistics of optical flow
On the spatial statistics of optical flow

Roth, S., Black, M. J.

International Journal of Computer Vision, 74(1):33-50, 2007 (article)

Abstract
We present an analysis of the spatial and temporal statistics of "natural" optical flow fields and a novel flow algorithm that exploits their spatial statistics. Training flow fields are constructed using range images of natural scenes and 3D camera motions recovered from hand-held and car-mounted video sequences. A detailed analysis of optical flow statistics in natural scenes is presented and machine learning methods are developed to learn a Markov random field model of optical flow. The prior probability of a flow field is formulated as a Field-of-Experts model that captures the spatial statistics in overlapping patches and is trained using contrastive divergence. This new optical flow prior is compared with previous robust priors and is incorporated into a recent, accurate algorithm for dense optical flow computation. Experiments with natural and synthetic sequences illustrate how the learned optical flow prior quantitatively improves flow accuracy and how it captures the rich spatial structure found in natural scene motion.

pdf preprint pdf from publisher [BibTex]

pdf preprint pdf from publisher [BibTex]


Deterministic Annealing for Multiple-Instance Learning
Deterministic Annealing for Multiple-Instance Learning

Gehler, P., Chapelle, O.

In Artificial Intelligence and Statistics (AIStats), 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Point-and-click cursor control by a person with tetraplegia using an intracortical neural interface system

Kim, S., Simeral, J. D., Hochberg, L. R., Friehs, G., Donoghue, J. P., Black, M. J.

Program No. 517.2. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


Assistive technology and robotic control using {MI} ensemble-based neural interface systems in humans with tetraplegia
Assistive technology and robotic control using MI ensemble-based neural interface systems in humans with tetraplegia

Donoghue, J. P., Nurmikko, A., Black, M. J., Hochberg, L.

Journal of Physiology, Special Issue on Brain Computer Interfaces, 579, pages: 603-611, 2007 (article)

Abstract
This review describes the rationale, early stage development, and initial human application of neural interface systems (NISs) for humans with paralysis. NISs are emerging medical devices designed to allowpersonswith paralysis to operate assistive technologies or to reanimatemuscles based upon a command signal that is obtained directly fromthe brain. Such systems require the development of sensors to detect brain signals, decoders to transformneural activity signals into a useful command, and an interface for the user.We review initial pilot trial results of an NIS that is based on an intracortical microelectrode sensor that derives control signals from the motor cortex.We review recent findings showing, first, that neurons engaged by movement intentions persist in motor cortex years after injury or disease to the motor system, and second, that signals derived from motor cortex can be used by persons with paralysis to operate a range of devices. We suggest that, with further development, this form of NIS holds promise as a useful new neurotechnology for those with limited motor function or communication.We also discuss the additional potential for neural sensors to be used in the diagnosis and management of various neurological conditions and as a new way to learn about human brain function.

pdf preprint pdf from publisher DOI [BibTex]

pdf preprint pdf from publisher DOI [BibTex]


Probabilistically modeling and decoding neural population activity in motor cortex
Probabilistically modeling and decoding neural population activity in motor cortex

Black, M. J., Donoghue, J. P.

In Toward Brain-Computer Interfacing, pages: 147-159, (Editors: Dornhege, G. and del R. Millan, J. and Hinterberger, T. and McFarland, D. and Muller, K.-R.), MIT Press, London, 2007 (incollection)

pdf [BibTex]

pdf [BibTex]


Learning Appearances with Low-Rank SVM
Learning Appearances with Low-Rank SVM

Wolf, L., Jhuang, H., Hazan, T.

In Conference on Computer Vision and Pattern Recognition (CVPR), 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
Neural correlates of grip aperture in primary motor cortex

Vargas-Irwin, C., Shakhnarovich, G., Artemiadis, P., Donoghue, J. P., Black, M. J.

Program No. 517.10. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


no image
Directional tuning in motor cortex of a person with ALS

Simeral, J. D., Donoghue, J. P., Black, M. J., Friehs, G. M., Brown, R. H., Krivickas, L. S., Hochberg, L. R.

Program No. 517.4. 2007 Abstract Viewer and Itinerary Planner, Society for Neuroscience, San Diego, CA, 2007, Online (conference)

[BibTex]

[BibTex]


Denoising archival films using a learned {Bayesian} model
Denoising archival films using a learned Bayesian model

Moldovan, T. M., Roth, S., Black, M. J.

(CS-07-03), Brown University, Department of Computer Science, 2007 (techreport)

pdf [BibTex]

pdf [BibTex]


Steerable random fields
Steerable random fields

(Best Paper Award, INI-Graphics Net, 2008)

Roth, S., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1-8, Rio de Janeiro, Brazil, 2007 (inproceedings)

pdf [BibTex]

pdf [BibTex]