Header logo is ps


2020


3D Morphable Face Models - Past, Present and Future
3D Morphable Face Models - Past, Present and Future

Egger, B., Smith, W. A. P., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.

ACM Transactions on Graphics, September 2020 (article)

Abstract
In this paper, we provide a detailed survey of 3D Morphable Face Models over the 20 years since they were first proposed. The challenges in building and applying these models, namely capture, modeling, image formation, and image analysis, are still active research topics, and we review the state-of-the-art in each of these areas. We also look ahead, identifying unsolved challenges, proposing directions for future research and highlighting the broad range of current and future applications.

project page pdf preprint [BibTex]

2020

project page pdf preprint [BibTex]


{GENTEL : GENerating Training data Efficiently for Learning to segment medical images}
GENTEL : GENerating Training data Efficiently for Learning to segment medical images

Thakur, R. P., Rocamora, S. P., Goel, L., Pohmann, R., Machann, J., Black, M. J.

Congrès Reconnaissance des Formes, Image, Apprentissage et Perception (RFAIP), June 2020 (conference)

Abstract
Accurately segmenting MRI images is crucial for many clinical applications. However, manually segmenting images with accurate pixel precision is a tedious and time consuming task. In this paper we present a simple, yet effective method to improve the efficiency of the image segmentation process. We propose to transform the image annotation task into a binary choice task. We start by using classical image processing algorithms with different parameter values to generate multiple, different segmentation masks for each input MRI image. Then, instead of segmenting the pixels of the images, the user only needs to decide whether a segmentation is acceptable or not. This method allows us to efficiently obtain high quality segmentations with minor human intervention. With the selected segmentations, we train a state-of-the-art neural network model. For the evaluation, we use a second MRI dataset (1.5T Dataset), acquired with a different protocol and containing annotations. We show that the trained network i) is able to automatically segment cases where none of the classical methods obtain a high quality result ; ii) generalizes to the second MRI dataset, which was acquired with a different protocol and was never seen at training time ; and iii) enables detection of miss-annotations in this second dataset. Quantitatively, the trained network obtains very good results: DICE score - mean 0.98, median 0.99- and Hausdorff distance (in pixels) - mean 4.7, median 2.0-.

[BibTex]

[BibTex]


Learning to Dress 3D People in Generative Clothing
Learning to Dress 3D People in Generative Clothing

Ma, Q., Yang, J., Ranjan, A., Pujades, S., Pons-Moll, G., Tang, S., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Three-dimensional human body models are widely used in the analysis of human pose and motion. Existing models, however, are learned from minimally-clothed 3D scans and thus do not generalize to the complexity of dressed people in common images and videos. Additionally, current models lack the expressive power needed to represent the complex non-linear geometry of pose-dependent clothing shape. To address this, we learn a generative 3D mesh model of clothed people from 3D scans with varying pose and clothing. Specifically, we train a conditional Mesh-VAE-GAN to learn the clothing deformation from the SMPL body model, making clothing an additional term on SMPL. Our model is conditioned on both pose and clothing type, giving the ability to draw samples of clothing to dress different body shapes in a variety of styles and poses. To preserve wrinkle detail, our Mesh-VAE-GAN extends patchwise discriminators to 3D meshes. Our model, named CAPE, represents global shape and fine local structure, effectively extending the SMPL body model to clothing. To our knowledge, this is the first generative model that directly dresses 3D human body meshes and generalizes to different poses.

arxiv project page code [BibTex]


Generating 3D People in Scenes without People
Generating 3D People in Scenes without People

Zhang, Y., Hassan, M., Neumann, H., Black, M. J., Tang, S.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
We present a fully automatic system that takes a 3D scene and generates plausible 3D human bodies that are posed naturally in that 3D scene. Given a 3D scene without people, humans can easily imagine how people could interact with the scene and the objects in it. However, this is a challenging task for a computer as solving it requires that (1) the generated human bodies to be semantically plausible within the 3D environment (e.g. people sitting on the sofa or cooking near the stove), and (2) the generated human-scene interaction to be physically feasible such that the human body and scene do not interpenetrate while, at the same time, body-scene contact supports physical interactions. To that end, we make use of the surface-based 3D human model SMPL-X. We first train a conditional variational autoencoder to predict semantically plausible 3D human poses conditioned on latent scene representations, then we further refine the generated 3D bodies using scene constraints to enforce feasible physical interaction. We show that our approach is able to synthesize realistic and expressive 3D human bodies that naturally interact with 3D environment. We perform extensive experiments demonstrating that our generative framework compares favorably with existing methods, both qualitatively and quantitatively. We believe that our scene-conditioned 3D human generation pipeline will be useful for numerous applications; e.g. to generate training data for human pose estimation, in video games and in VR/AR. Our project page for data and code can be seen at: \url{https://vlg.inf.ethz.ch/projects/PSI/}.

Code PDF [BibTex]

Code PDF [BibTex]


Learning Physics-guided Face Relighting under Directional Light
Learning Physics-guided Face Relighting under Directional Light

Nestmeyer, T., Lalonde, J., Matthews, I., Lehrmann, A. M.

In Conference on Computer Vision and Pattern Recognition, IEEE/CVF, June 2020 (inproceedings) Accepted

Abstract
Relighting is an essential step in realistically transferring objects from a captured image into another environment. For example, authentic telepresence in Augmented Reality requires faces to be displayed and relit consistent with the observer's scene lighting. We investigate end-to-end deep learning architectures that both de-light and relight an image of a human face. Our model decomposes the input image into intrinsic components according to a diffuse physics-based image formation model. We enable non-diffuse effects including cast shadows and specular highlights by predicting a residual correction to the diffuse render. To train and evaluate our model, we collected a portrait database of 21 subjects with various expressions and poses. Each sample is captured in a controlled light stage setup with 32 individual light sources. Our method creates precise and believable relighting results and generalizes to complex illumination conditions and challenging poses, including when the subject is not looking straight at the camera.

Paper [BibTex]

Paper [BibTex]


{VIBE}: Video Inference for Human Body Pose and Shape Estimation
VIBE: Video Inference for Human Body Pose and Shape Estimation

Kocabas, M., Athanasiou, N., Black, M. J.

In Computer Vision and Pattern Recognition (CVPR), June 2020 (inproceedings)

Abstract
Human motion is fundamental to understanding behavior. Despite progress on single-image 3D pose and shape estimation, existing video-based state-of-the-art methodsfail to produce accurate and natural motion sequences due to a lack of ground-truth 3D motion data for training. To address this problem, we propose “Video Inference for Body Pose and Shape Estimation” (VIBE), which makes use of an existing large-scale motion capture dataset (AMASS) together with unpaired, in-the-wild, 2D keypoint annotations. Our key novelty is an adversarial learning framework that leverages AMASS to discriminate between real human motions and those produced by our temporal pose and shape regression networks. We define a temporal network architecture and show that adversarial training, at the sequence level, produces kinematically plausible motion sequences without in-the-wild ground-truth 3D labels. We perform extensive experimentation to analyze the importance of motion and demonstrate the effectiveness of VIBE on challenging 3D pose estimation datasets, achieving state-of-the-art performance. Code and pretrained models are available at https://github.com/mkocabas/VIBE

arXiv code video supplemental video [BibTex]


General Movement Assessment from videos of computed {3D} infant body models is equally effective compared to conventional {RGB} Video rating
General Movement Assessment from videos of computed 3D infant body models is equally effective compared to conventional RGB Video rating

Schroeder, S., Hesse, N., Weinberger, R., Tacke, U., Gerstl, L., Hilgendorff, A., Heinen, F., Arens, M., Bodensteiner, C., Dijkstra, L. J., Pujades, S., Black, M., Hadders-Algra, M.

Early Human Development, 144, May 2020 (article)

Abstract
Background: General Movement Assessment (GMA) is a powerful tool to predict Cerebral Palsy (CP). Yet, GMA requires substantial training hampering its implementation in clinical routine. This inspired a world-wide quest for automated GMA. Aim: To test whether a low-cost, marker-less system for three-dimensional motion capture from RGB depth sequences using a whole body infant model may serve as the basis for automated GMA. Study design: Clinical case study at an academic neurodevelopmental outpatient clinic. Subjects: Twenty-nine high-risk infants were recruited and assessed at their clinical follow-up at 2-4 month corrected age (CA). Their neurodevelopmental outcome was assessed regularly up to 12-31 months CA. Outcome measures: GMA according to Hadders-Algra by a masked GMA-expert of conventional and computed 3D body model (“SMIL motion”) videos of the same GMs. Agreement between both GMAs was assessed, and sensitivity and specificity of both methods to predict CP at ≥12 months CA. Results: The agreement of the two GMA ratings was substantial, with κ=0.66 for the classification of definitely abnormal (DA) GMs and an ICC of 0.887 (95% CI 0.762;0.947) for a more detailed GM-scoring. Five children were diagnosed with CP (four bilateral, one unilateral CP). The GMs of the child with unilateral CP were twice rated as mildly abnormal. DA-ratings of both videos predicted bilateral CP well: sensitivity 75% and 100%, specificity 88% and 92% for conventional and SMIL motion videos, respectively. Conclusions: Our computed infant 3D full body model is an attractive starting point for automated GMA in infants at risk of CP.

DOI [BibTex]

DOI [BibTex]


Learning Multi-Human Optical Flow
Learning Multi-Human Optical Flow

Ranjan, A., Hoffmann, D. T., Tzionas, D., Tang, S., Romero, J., Black, M. J.

International Journal of Computer Vision (IJCV), (128):873-890, April 2020 (article)

Abstract
The optical flow of humans is well known to be useful for the analysis of human action. Recent optical flow methods focus on training deep networks to approach the problem. However, the training data used by them does not cover the domain of human motion. Therefore, we develop a dataset of multi-human optical flow and train optical flow networks on this dataset. We use a 3D model of the human body and motion capture data to synthesize realistic flow fields in both single-and multi-person images. We then train optical flow networks to estimate human flow fields from pairs of images. We demonstrate that our trained networks are more accurate than a wide range of top methods on held-out test data and that they can generalize well to real image sequences. The code, trained models and the dataset are available for research.

Paper Publisher Version poster link (url) DOI [BibTex]


From Variational to Deterministic Autoencoders
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

8th International Conference on Learning Representations (ICLR) , April 2020, *equal contribution (conference) Accepted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]

arXiv [BibTex]


Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations
Chained Representation Cycling: Learning to Estimate 3D Human Pose and Shape by Cycling Between Representations

Rueegg, N., Lassner, C., Black, M. J., Schindler, K.

In Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20), Febuary 2020 (inproceedings)

Abstract
The goal of many computer vision systems is to transform image pixels into 3D representations. Recent popular models use neural networks to regress directly from pixels to 3D object parameters. Such an approach works well when supervision is available, but in problems like human pose and shape estimation, it is difficult to obtain natural images with 3D ground truth. To go one step further, we propose a new architecture that facilitates unsupervised, or lightly supervised, learning. The idea is to break the problem into a series of transformations between increasingly abstract representations. Each step involves a cycle designed to be learnable without annotated training data, and the chain of cycles delivers the final solution. Specifically, we use 2D body part segments as an intermediate representation that contains enough information to be lifted to 3D, and at the same time is simple enough to be learned in an unsupervised way. We demonstrate the method by learning 3D human pose and shape from un-paired and un-annotated images. We also explore varying amounts of paired data and show that cycling greatly alleviates the need for paired data. While we present results for modeling humans, our formulation is general and can be applied to other vision problems.

pdf [BibTex]

pdf [BibTex]


no image
Real Time Trajectory Prediction Using Deep Conditional Generative Models

Gomez-Gonzalez, S., Prokudin, S., Schölkopf, B., Peters, J.

IEEE Robotics and Automation Letters, 5(2):970-976, IEEE, January 2020 (article)

arXiv DOI [BibTex]

2009


Ball Joints for Marker-less Human Motion Capture
Ball Joints for Marker-less Human Motion Capture

Pons-Moll, G., Rosenhahn, B.

In IEEE Workshop on Applications of Computer Vision (WACV),, December 2009 (inproceedings)

pdf [BibTex]

2009

pdf [BibTex]


no image
Background Subtraction Based on Rank Constraint for Point Trajectories

Ahmad, A., Del Bue, A., Lima, P.

In pages: 1-3, October 2009 (inproceedings)

Abstract
This work deals with a background subtraction algorithm for a fish-eye lens camera having 3 degrees of freedom, 2 in translation and 1 in rotation. The core assumption in this algorithm is that the background is considered to be composed of a dominant static plane in the world frame. The novelty lies in developing a rank-constraint based background subtraction for equidistant projection model, a property of the fish-eye lens. A detail simulation result is presented to support the hypotheses explained in this paper.

link (url) [BibTex]

link (url) [BibTex]


Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images
Parametric Modeling of the Beating Heart with Respiratory Motion Extracted from Magnetic Resonance Images

Pons-Moll, G., Crosas, C., Tadmor, G., MacLeod, R., Rosenhahn, B., Brooks, D.

In IEEE Computers in Cardiology (CINC), September 2009 (inproceedings)

[BibTex]

[BibTex]


Computer cursor control by motor cortical signals in humans with tetraplegia
Computer cursor control by motor cortical signals in humans with tetraplegia

Kim, S., Simeral, J. D., Hochberg, L. R., Donoghue, J. P., Black, M. J.

In 7th Asian Control Conference, ASCC09, pages: 988-993, Hong Kong, China, August 2009 (inproceedings)

pdf [BibTex]

pdf [BibTex]


no image
ISocRob-MSL 2009 Team Description Paper for Middle Sized League

Lima, P., Santos, J., Estilita, J., Barbosa, M., Ahmad, A., Carreira, J.

13th Annual RoboCup International Symposium 2009, July 2009 (techreport)

Abstract
This paper describes the status of the ISocRob MSL roboticsoccer team as required by the RoboCup 2009 qualification procedures.Since its previous participation in RoboCup, the ISocRob team has car-ried out significant developments in various topics, the most relevantof which are presented here. These include self-localization, 3D objecttracking and cooperative object localization, motion control and rela-tional behaviors. A brief description of the hardware of the ISocRobrobots and of the software architecture adopted by the team is also in-cluded.

[BibTex]

[BibTex]


no image
Denoising Fluorescence Endoscopy: A Motion-Compensated Temporal Recursive Video Filter with an Optimal Minimum Mean Square Error Parametrization

Stehle, T., Wulff, J., Behrens, A., Gross, S., Aach, T.

Abstract
Fluorescence endoscopy is an emerging technique for the detection of bladder cancer. A marker substance is brought into the patient's bladder which accumulates at cancer tissue. If a suitable narrow band light source is used for illumination, a red fluorescence of the marker substance is observable. Because of the low fluorescence photon count and because of the narrow band light source, only a small amount of light is detected by the camera's CCD sensor. This, in turn, leads to strong noise in the recorded video sequence. To overcome this problem, we apply a temporal recursive filter to the video sequence. The derivation of a filter function is presented, which leads to an optimal filter in the minimum mean square error sense. The algorithm is implemented as plug-in for the real-time capable clinical demonstrator platform RealTimeFrame and it is capable to process color videos with a resolution of 768times576 pixels at 50 frames per second.

pdf link (url) DOI [BibTex]


Fields of Experts
Fields of Experts

Roth, S., Black, M. J.

International Journal of Computer Vision (IJCV), 82(2):205-29, April 2009 (article)

Abstract
We develop a framework for learning generic, expressive image priors that capture the statistics of natural scenes and can be used for a variety of machine vision tasks. The approach provides a practical method for learning high-order Markov random field (MRF) models with potential functions that extend over large pixel neighborhoods. These clique potentials are modeled using the Product-of-Experts framework that uses non-linear functions of many linear filter responses. In contrast to previous MRF approaches all parameters, including the linear filters themselves, are learned from training data. We demonstrate the capabilities of this Field-of-Experts model with two example applications, image denoising and image inpainting, which are implemented using a simple, approximate inference scheme. While the model is trained on a generic image database and is not tuned toward a specific application, we obtain results that compete with specialized techniques.

pdf pdf from publisher [BibTex]

pdf pdf from publisher [BibTex]


no image
Classification of colon polyps in NBI endoscopy using vascularization features

Stehle, T., Auer, R., Gross, S., Behrens, A., Wulff, J., Aach, T., Winograd, R., Trautwein, C., Tischendorf, J.

In Medical Imaging 2009: Computer-Aided Diagnosis, 7260, (Editors: N. Karssemeijer and M. L. Giger), SPIE, February 2009 (inproceedings)

Abstract
The evolution of colon cancer starts with colon polyps. There are two different types of colon polyps, namely hyperplasias and adenomas. Hyperplasias are benign polyps which are known not to evolve into cancer and, therefore, do not need to be removed. By contrast, adenomas have a strong tendency to become malignant. Therefore, they have to be removed immediately via polypectomy. For this reason, a method to differentiate reliably adenomas from hyperplasias during a preventive medical endoscopy of the colon (colonoscopy) is highly desirable. A recent study has shown that it is possible to distinguish both types of polyps visually by means of their vascularization. Adenomas exhibit a large amount of blood vessel capillaries on their surface whereas hyperplasias show only few of them. In this paper, we show the feasibility of computer-based classification of colon polyps using vascularization features. The proposed classification algorithm consists of several steps: For the critical part of vessel segmentation, we implemented and compared two segmentation algorithms. After a skeletonization of the detected blood vessel candidates, we used the results as seed points for the Fast Marching algorithm which is used to segment the whole vessel lumen. Subsequently, features are computed from this segmentation which are then used to classify the polyps. In leave-one-out tests on our polyp database (56 polyps), we achieve a correct classification rate of approximately 90%.

DOI [BibTex]

DOI [BibTex]


{One-shot scanning using de bruijn spaced grids}
One-shot scanning using de bruijn spaced grids

Ulusoy, A., Calakli, F., Taubin, G.

In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on, pages: 1786-1792, IEEE, 2009 (inproceedings)

Abstract
In this paper we present a new one-shot method to reconstruct the shape of dynamic 3D objects and scenes based on active illumination. In common with other related prior-art methods, a static grid pattern is projected onto the scene, a video sequence of the illuminated scene is captured, a shape estimate is produced independently for each video frame, and the one-shot property is realized at the expense of space resolution. The main challenge in grid-based one-shot methods is to engineer the pattern and algorithms so that the correspondence between pattern grid points and their images can be established very fast and without uncertainty. We present an efficient one-shot method which exploits simple geometric constraints to solve the correspondence problem. We also introduce De Bruijn spaced grids, a novel grid pattern, and show with strong empirical data that the resulting scheme is much more robust compared to those based on uniform spaced grids.

pdf link (url) DOI [BibTex]

pdf link (url) DOI [BibTex]


no image
An introduction to Kernel Learning Algorithms

Gehler, P., Schölkopf, B.

In Kernel Methods for Remote Sensing Data Analysis, pages: 25-48, 2, (Editors: Gustavo Camps-Valls and Lorenzo Bruzzone), Wiley, New York, NY, USA, 2009 (inbook)

Abstract
Kernel learning algorithms are currently becoming a standard tool in the area of machine learning and pattern recognition. In this chapter we review the fundamental theory of kernel learning. As the basic building block we introduce the kernel function, which provides an elegant and general way to compare possibly very complex objects. We then review the concept of a reproducing kernel Hilbert space and state the representer theorem. Finally we give an overview of the most prominent algorithms, which are support vector classification and regression, Gaussian Processes and kernel principal analysis. With multiple kernel learning and structured output prediction we also introduce some more recent advancements in the field.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Estimating human shape and pose from a single image
Estimating human shape and pose from a single image

Guan, P., Weiss, A., Balan, A., Black, M. J.

In Int. Conf. on Computer Vision, ICCV, pages: 1381-1388, 2009 (inproceedings)

Abstract
We describe a solution to the challenging problem of estimating human body shape from a single photograph or painting. Our approach computes shape and pose parameters of a 3D human body model directly from monocular image cues and advances the state of the art in several directions. First, given a user-supplied estimate of the subject's height and a few clicked points on the body we estimate an initial 3D articulated body pose and shape. Second, using this initial guess we generate a tri-map of regions inside, outside and on the boundary of the human, which is used to segment the image using graph cuts. Third, we learn a low-dimensional linear model of human shape in which variations due to height are concentrated along a single dimension, enabling height-constrained estimation of body shape. Fourth, we formulate the problem of parametric human shape from shading. We estimate the body pose, shape and reflectance as well as the scene lighting that produces a synthesized body that robustly matches the image evidence. Quantitative experiments demonstrate how smooth shading provides powerful constraints on human shape. We further demonstrate a novel application in which we extract 3D human models from archival photographs and paintings.

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]

pdf video - mov 25MB video - mp4 10MB YouTube Project Page [BibTex]


On feature combination for multiclass object classification
On feature combination for multiclass object classification

Gehler, P., Nowozin, S.

In Proceedings of the Twelfth IEEE International Conference on Computer Vision, pages: 221-228, 2009, oral presentation (inproceedings)

project page, code, data GoogleScholar pdf DOI [BibTex]

project page, code, data GoogleScholar pdf DOI [BibTex]


no image
Visual Object Discovery

Sinha, P., Balas, B., Ostrovsky, Y., Wulff, J.

In Object Categorization: Computer and Human Vision Perspectives, pages: 301-323, (Editors: S. J. Dickinson, A. Leonardis, B. Schiele, M.J. Tarr), Cambridge University Press, 2009 (inbook)

link (url) [BibTex]

link (url) [BibTex]


no image
Evaluating the potential of primary motor and premotor cortex for mutltidimensional neuroprosthetic control of complete reaching and grasping actions

Vargas-Irwin, C. E., Yadollahpour, P., Shakhnarovich, G., Black, M. J., Donoghue, J. P.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009, Online (conference)

[BibTex]

[BibTex]


Segmentation, Ordering and Multi-object Tracking Using Graphical   Models
Segmentation, Ordering and Multi-object Tracking Using Graphical Models

Wang, C., Gorce, M. D. L., Paragios, N.

In IEEE International Conference on Computer Vision (ICCV), 2009 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Modeling and Evaluation of Human-to-Robot Mapping of Grasps
Modeling and Evaluation of Human-to-Robot Mapping of Grasps

Romero, J., Kjellström, H., Kragic, D.

In International Conference on Advanced Robotics (ICAR), pages: 1-6, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Polyp Segmentation in NBI Colonoscopy

Gross, S., Kennel, M., Stehle, T., Wulff, J., Tischendorf, J., Trautwein, C., Aach, T.

Abstract
Endoscopic screening of the colon (colonoscopy) is performed to prevent cancer and to support therapy. During intervention colon polyps are located, inspected and, if need be, removed by the investigator. We propose a segmentation algorithm as a part of an automatic polyp classification system for colonoscopic Narrow-Band images. Our approach includes multi-scale filtering for noise reduction, suppression of small blood vessels, and enhancement of major edges. Results of the subsequent edge detection are compared to a set of elliptic templates and evaluated. We validated our algorithm on our polyp database with images acquired during routine colonoscopic examinations. The presented results show the reliable segmentation performance of our method and its robustness to image variations.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


An additive latent feature model for transparent object recognition
An additive latent feature model for transparent object recognition

Fritz, M., Black, M., Bradski, G., Karayev, S., Darrell, T.

In Advances in Neural Information Processing Systems 22, NIPS, pages: 558-566, MIT Press, 2009 (inproceedings)

pdf slides [BibTex]

pdf slides [BibTex]


Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis
Automatic recognition of rodent behavior: A tool for systematic phenotypic analysis

Serre, T.*, Jhuang, H*., Garrote, E., Poggio, T., Steele, A.

CBCL paper #283/MIT-CSAIL-TR #2009-052., MIT, 2009 (techreport)

pdf [BibTex]

pdf [BibTex]


Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers
Let the kernel figure it out; Principled learning of pre-processing for kernel classifiers

Gehler, P., Nowozin, S.

In Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pages: 2836-2843, IEEE Computer Society, 2009 (inproceedings)

doi project page pdf [BibTex]

doi project page pdf [BibTex]


Monocular Real-Time 3D Articulated Hand Pose Estimation
Monocular Real-Time 3D Articulated Hand Pose Estimation

Romero, J., Kjellström, H., Kragic, D.

In IEEE-RAS International Conference on Humanoid Robots, pages: 87-92, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


Grasp Recognition and Mapping on Humanoid Robots
Grasp Recognition and Mapping on Humanoid Robots

Do, M., Romero, J., Kjellström, H., Azad, P., Asfour, T., Kragic, D., Dillmann, R.

In IEEE-RAS International Conference on Humanoid Robots, pages: 465-471, 2009 (inproceedings)

Pdf Video [BibTex]

Pdf Video [BibTex]


4D Cardiac Segmentation of the Epicardium and Left Ventricle
4D Cardiac Segmentation of the Epicardium and Left Ventricle

Pons-Moll, G., Tadmor, G., MacLeod, R. S., Rosenhahn, B., Brooks, D. H.

In World Congress of Medical Physics and Biomedical Engineering (WC), 2009 (inproceedings)

[BibTex]

[BibTex]


Geometric Potential Force for the Deformable Model
Geometric Potential Force for the Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 20th British Machine Vision Conference, pages: 1-11, 2009 (inproceedings)

Abstract
We propose a new external force field for deformable models which can be conve- niently generalized to high dimensions. The external force field is based on hypothesized interactions between the relative geometries of the deformable model and image gradi- ents. The evolution of the deformable model is solved using the level set method. The dynamic interaction forces between the geometries can greatly improve the deformable model performance in acquiring complex geometries and highly concave boundaries, and in dealing with weak image edges. The new deformable model can handle arbi- trary cross-boundary initializations. Here, we show that the proposed method achieve significant improvements when compared against existing state-of-the-art techniques.

[BibTex]

[BibTex]


Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy
Left Ventricular Regional Wall Curvedness and Wall Stress in Patients with Ischemic Dilated Cardiomyopathy

Liang Zhong, Yi Su, Si Yong Yeo, Ru San Tan Dhanjoo Ghista, Ghassan Kassab

American Journal of Physiology – Heart and Circulatory Physiology, 296(3):H573-84, 2009 (article)

Abstract
Geometric remodeling of the left ventricle (LV) after myocardial infarction is associated with changes in myocardial wall stress. The objective of this study was to determine the regional curvatures and wall stress based on three-dimensional (3-D) reconstructions of the LV using MRI. Ten patients with ischemic dilated cardiomyopathy (IDCM) and 10 normal subjects underwent MRI scan. The IDCM patients also underwent delayed gadolinium-enhancement imaging to delineate the extent of myocardial infarct. Regional curvedness, local radii of curvature, and wall thickness were calculated. The percent curvedness change between end diastole and end systole was also calculated. In normal heart, a short- and long-axis two-dimensional analysis showed a 41 +/- 11% and 45 +/- 12% increase of the mean of peak systolic wall stress between basal and apical sections, respectively. However, 3-D analysis showed no significant difference in peak systolic wall stress from basal and apical sections (P = 0.298, ANOVA). LV shape differed between IDCM patients and normal subjects in several ways: LV shape was more spherical (sphericity index = 0.62 +/- 0.08 vs. 0.52 +/- 0.06, P < 0.05), curvedness at end diastole (mean for 16 segments = 0.034 +/- 0.0056 vs. 0.040 +/- 0.0071 mm(-1), P < 0.001) and end systole (mean for 16 segments = 0.037 +/- 0.0068 vs. 0.067 +/- 0.020 mm(-1), P < 0.001) was affected by infarction, and peak systolic wall stress was significantly increased at each segment in IDCM patients. The 3-D quantification of regional wall stress by cardiac MRI provides more precise evaluation of cardiac mechanics. Identification of regional curvedness and wall stresses helps delineate the mechanisms of LV remodeling in IDCM and may help guide therapeutic LV restoration.

[BibTex]

[BibTex]


no image
Computational mechanisms for the recognition of time sequences of images in the visual cortex

Tan, C., Jhuang, H., Singer, J., Serre, T., Sheinberg, D., Poggio, T.

Society for Neuroscience, 2009 (conference)

pdf [BibTex]

pdf [BibTex]


Interactive Inverse Kinematics for Monocular Motion Estimation
Interactive Inverse Kinematics for Monocular Motion Estimation

Morten Engell-Norregaard, Soren Hauberg, Jerome Lapuyade, Kenny Erleben, Kim S. Pedersen

In The 6th Workshop on Virtual Reality Interaction and Physical Simulation (VRIPHYS), 2009 (inproceedings)

Conference site Paper site [BibTex]

Conference site Paper site [BibTex]


A Comprehensive Grasp Taxonomy
A Comprehensive Grasp Taxonomy

Feix, T., Pawlik, R., Schmiedmayer, H., Romero, J., Kragic, D.

In Robotics, Science and Systems: Workshop on Understanding the Human Hand for Advancing Robotic Manipulation, 2009 (inproceedings)

Pdf [BibTex]

Pdf [BibTex]


no image
Population coding of ground truth motion in natural scenes in the early visual system

Stanley, G., Black, M. J., Lewis, J., Desbordes, G., Jin, J., Alonso, J.

COSYNE, 2009 (conference)

[BibTex]

[BibTex]


Level Set Based Automatic Segmentation of Human Aorta
Level Set Based Automatic Segmentation of Human Aorta

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In International Conference on Computational & Mathematical Biomedical Engineering, pages: 242-245, 2009 (inproceedings)

[BibTex]

[BibTex]


A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging
A Curvature-Based Approach for Left Ventricular Shape Analysis from Cardiac Magnetic Resonance Imaging

Si Yong Yeo, Liang Zhong, Yi Su, Ru San Tan, Dhanjoo Ghista

Medical & Biological Engineering & Computing, 47(3):313-322, 2009 (article)

Abstract
It is believed that left ventricular (LV) regional shape is indicative of LV regional function, and cardiac pathologies are often associated with regional alterations in ventricular shape. In this article, we present a set of procedures for evaluating regional LV surface shape from anatomically accurate models reconstructed from cardiac magnetic resonance (MR) images. LV surface curvatures are computed using local surface fitting method, which enables us to assess regional LV shape and its variation. Comparisons are made between normal and diseased hearts. It is illustrated that LV surface curvatures at different regions of the normal heart are higher than those of the diseased heart. Also, the normal heart experiences a larger change in regional curvedness during contraction than the diseased heart. It is believed that with a wide range of dataset being evaluated, this approach will provide a new and efficient way of quantifying LV regional function.

link (url) [BibTex]

link (url) [BibTex]


In Defense of Orthonormality Constraints for Nonrigid Structure from Motion
In Defense of Orthonormality Constraints for Nonrigid Structure from Motion

Akhter, I., Sheikh, Y., Khan, S.

In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages: 2447-2453, 2009 (inproceedings)

Abstract
In factorization approaches to nonrigid structure from motion, the 3D shape of a deforming object is usually modeled as a linear combination of a small number of basis shapes. The original approach to simultaneously estimate the shape basis and nonrigid structure exploited orthonormality constraints for metric rectification. Recently, it has been asserted that structure recovery through orthonormality constraints alone is inherently ambiguous and cannot result in a unique solution. This assertion has been accepted as conventional wisdom and is the justification of many remedial heuristics in literature. Our key contribution is to prove that orthonormality constraints are in fact sufficient to recover the 3D structure from image observations alone. We characterize the true nature of the ambiguity in using orthonormality constraints for the shape basis and show that it has no impact on structure reconstruction. We conclude from our experimentation that the primary challenge in using shape basis for nonrigid structure from motion is the difficulty in the optimization problem rather than the ambiguity in orthonormality constraints.

pdf [BibTex]

pdf [BibTex]


no image
Dynamic distortion correction for endoscopy systems with exchangeable optics

Stehle, T., Hennes, M., Gross, S., Behrens, A., Wulff, J., Aach, T.

In Bildverarbeitung für die Medizin 2009, pages: 142-146, Springer Berlin Heidelberg, 2009 (inproceedings)

Abstract
Endoscopic images are strongly affected by lens distortion caused by the use of wide angle lenses. In case of endoscopy systems with exchangeable optics, e.g. in bladder endoscopy or sinus endoscopy, the camera sensor and the optics do not form a rigid system but they can be shifted and rotated with respect to each other during an examination. This flexibility has a major impact on the location of the distortion centre as it is moved along with the optics. In this paper, we describe an algorithm for the dynamic correction of lens distortion in cystoscopy which is based on a one time calibration. For the compensation, we combine a conventional static method for distortion correction with an algorithm to detect the position and the orientation of the elliptic field of view. This enables us to estimate the position of the distortion centre according to the relative movement of camera and optics. Therewith, a distortion correction for arbitrary rotation angles and shifts becomes possible without performing static calibrations for every possible combination of shifts and angles beforehand.

link (url) DOI [BibTex]

link (url) DOI [BibTex]


Three Dimensional Monocular Human Motion Analysis in End-Effector Space
Three Dimensional Monocular Human Motion Analysis in End-Effector Space

Soren Hauberg, Jerome Lapuyade, Morten Engell-Norregaard, Kenny Erleben, Kim S. Pedersen

In Energy Minimization Methods in Computer Vision and Pattern Recognition, 5681, pages: 235-248, Lecture Notes in Computer Science, (Editors: Cremers, Daniel and Boykov, Yuri and Blake, Andrew and Schmidt, Frank), Springer Berlin Heidelberg, 2009 (inproceedings)

Publishers site Paper site PDF [BibTex]

Publishers site Paper site PDF [BibTex]


no image
Decoding visual motion from correlated firing of thalamic neurons

Stanley, G. B., Black, M. J., Desbordes, G., Jin, J., Wang, Y., Alonso, J.

2009 Abstract Viewer and Itinerary Planner. Society for Neuroscience, Society for Neuroscience, 2009 (conference)

[BibTex]

[BibTex]


Segmentation of Human Upper Airway Using a Level Set Based Deformable Model
Segmentation of Human Upper Airway Using a Level Set Based Deformable Model

Si Yong Yeo, Xianghua Xie, Igor Sazonov, Perumal Nithiarasu

In The 13th Medical Image Understanding and Analysis, 2009 (inproceedings)

[BibTex]

[BibTex]

2006


no image
Finding directional movement representations in motor cortical neural populations using nonlinear manifold learning

WorKim, S., Simeral, J., Jenkins, O., Donoghue, J., Black, M.

World Congress on Medical Physics and Biomedical Engineering 2006, Seoul, Korea, August 2006 (conference)

[BibTex]

2006

[BibTex]


A non-parametric {Bayesian} approach to spike sorting
A non-parametric Bayesian approach to spike sorting

Wood, F., Goldwater, S., Black, M. J.

In International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, pages: 1165-1169, New York, NY, August 2006 (inproceedings)

pdf [BibTex]

pdf [BibTex]


Predicting {3D} people from {2D} pictures
Predicting 3D people from 2D pictures

(Best Paper)

Sigal, L., Black, M. J.

In Proc. IV Conf. on Articulated Motion and DeformableObjects (AMDO), LNCS 4069, pages: 185-195, July 2006 (inproceedings)

Abstract
We propose a hierarchical process for inferring the 3D pose of a person from monocular images. First we infer a learned view-based 2D body model from a single image using non-parametric belief propagation. This approach integrates information from bottom-up body-part proposal processes and deals with self-occlusion to compute distributions over limb poses. Then, we exploit a learned Mixture of Experts model to infer a distribution of 3D poses conditioned on 2D poses. This approach is more general than recent work on inferring 3D pose directly from silhouettes since the 2D body model provides a richer representation that includes the 2D joint angles and the poses of limbs that may be unobserved in the silhouette. We demonstrate the method in a laboratory setting where we evaluate the accuracy of the 3D poses against ground truth data. We also estimate 3D body pose in a monocular image sequence. The resulting 3D estimates are sufficiently accurate to serve as proposals for the Bayesian inference of 3D human motion over time

pdf pdf from publisher Video [BibTex]

pdf pdf from publisher Video [BibTex]