Header logo is ps


2019


Thumb xl celia
Decoding subcategories of human bodies from both body- and face-responsive cortical regions

Foster, C., Zhao, M., Romero, J., Black, M. J., Mohler, B. J., Bartels, A., Bülthoff, I.

NeuroImage, 202(15):116085, November 2019 (article)

Abstract
Our visual system can easily categorize objects (e.g. faces vs. bodies) and further differentiate them into subcategories (e.g. male vs. female). This ability is particularly important for objects of social significance, such as human faces and bodies. While many studies have demonstrated category selectivity to faces and bodies in the brain, how subcategories of faces and bodies are represented remains unclear. Here, we investigated how the brain encodes two prominent subcategories shared by both faces and bodies, sex and weight, and whether neural responses to these subcategories rely on low-level visual, high-level visual or semantic similarity. We recorded brain activity with fMRI while participants viewed faces and bodies that varied in sex, weight, and image size. The results showed that the sex of bodies can be decoded from both body- and face-responsive brain areas, with the former exhibiting more consistent size-invariant decoding than the latter. Body weight could also be decoded in face-responsive areas and in distributed body-responsive areas, and this decoding was also invariant to image size. The weight of faces could be decoded from the fusiform body area (FBA), and weight could be decoded across face and body stimuli in the extrastriate body area (EBA) and a distributed body-responsive area. The sex of well-controlled faces (e.g. excluding hairstyles) could not be decoded from face- or body-responsive regions. These results demonstrate that both face- and body-responsive brain regions encode information that can distinguish the sex and weight of bodies. Moreover, the neural patterns corresponding to sex and weight were invariant to image size and could sometimes generalize across face and body stimuli, suggesting that such subcategorical information is encoded with a high-level visual or semantic code.

paper pdf DOI [BibTex]

2019

paper pdf DOI [BibTex]


Thumb xl cover walking seq
AirCap – Aerial Outdoor Motion Capture

Ahmad, A., Price, E., Tallamraju, R., Saini, N., Lawless, G., Ludwig, R., Martinovic, I., Bülthoff, H. H., Black, M. J.

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2019), Workshop on Aerial Swarms, November 2019 (misc)

Abstract
This paper presents an overview of the Grassroots project Aerial Outdoor Motion Capture (AirCap) running at the Max Planck Institute for Intelligent Systems. AirCap's goal is to achieve markerless, unconstrained, human motion capture (mocap) in unknown and unstructured outdoor environments. To that end, we have developed an autonomous flying motion capture system using a team of aerial vehicles (MAVs) with only on-board, monocular RGB cameras. We have conducted several real robot experiments involving up to 3 aerial vehicles autonomously tracking and following a person in several challenging scenarios using our approach of active cooperative perception developed in AirCap. Using the images captured by these robots during the experiments, we have demonstrated a successful offline body pose and shape estimation with sufficiently high accuracy. Overall, we have demonstrated the first fully autonomous flying motion capture system involving multiple robots for outdoor scenarios.

[BibTex]

[BibTex]


Thumb xl website teaser
Resolving 3D Human Pose Ambiguities with 3D Scene Constraints

Hassan, M., Choutas, V., Tzionas, D., Black, M. J.

In International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
To understand and analyze human behavior, we need to capture humans moving in, and interacting with, the world. Most existing methods perform 3D human pose estimation without explicitly considering the scene. We observe however that the world constrains the body and vice-versa. To motivate this, we show that current 3D human pose estimation methods produce results that are not consistent with the 3D scene. Our key contribution is to exploit static 3D scene structure to better estimate human pose from monocular images. The method enforces Proximal Relationships with Object eXclusion and is called PROX. To test this, we collect a new dataset composed of 12 different 3D scenes and RGB sequences of 20 subjects moving in and interacting with the scenes. We represent human pose using the 3D human body model SMPL-X and extend SMPLify-X to estimate body pose using scene constraints. We make use of the 3D scene information by formulating two main constraints. The interpenetration constraint penalizes intersection between the body model and the surrounding 3D scene. The contact constraint encourages specific parts of the body to be in contact with scene surfaces if they are close enough in distance and orientation. For quantitative evaluation we capture a separate dataset with 180 RGB frames in which the ground-truth body pose is estimated using a motion-capture system. We show quantitatively that introducing scene constraints significantly reduces 3D joint error and vertex error. Our code and data are available for research at https://prox.is.tue.mpg.de.

pdf link (url) [BibTex]

pdf link (url) [BibTex]


Thumb xl spin3
Learning to Reconstruct 3D Human Pose and Shape via Model-fitting in the Loop

Kolotouros, N., Pavlakos, G., Black, M. J., Daniilidis, K.

In International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
Model-based human pose estimation is currently approached through two different paradigms. Optimization-based methods fit a parametric body model to 2D observations in an iterative manner, leading to accurate image-model alignments, but are often slow and sensitive to the initialization. In contrast, regression-based methods, that use a deep network to directly estimate the model parameters from pixels, tend to provide reasonable, but not pixel accurate, results while requiring huge amounts of supervision. In this work, instead of investigating which approach is better, our key insight is that the two paradigms can form a strong collaboration. A reasonable, directly regressed estimate from the network can initialize the iterative optimization making the fitting faster and more accurate. Similarly, a pixel accurate fit from iterative optimization can act as strong supervision for the network. This is the core of our proposed approach SPIN (SMPL oPtimization IN the loop). The deep network initializes an iterative optimization routine that fits the body model to 2D joints within the training loop, and the fitted estimate is subsequently used to supervise the network. Our approach is self-improving by nature, since better network estimates can lead the optimization to better solutions, while more accurate optimization fits provide better supervision for the network. We demonstrate the effectiveness of our approach in different settings, where 3D ground truth is scarce, or not available, and we consistently outperform the state-of-the-art model-based pose estimation approaches by significant margins.

pdf code project [BibTex]

pdf code project [BibTex]


Thumb xl end to end learning for graph decomposition
End-to-end Learning for Graph Decomposition

Song, J., Andres, B., Black, M., Hilliges, O., Tang, S.

In International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
Deep neural networks provide powerful tools for pattern recognition, while classical graph algorithms are widely used to solve combinatorial problems. In computer vision, many tasks combine elements of both pattern recognition and graph reasoning. In this paper, we study how to connect deep networks with graph decomposition into an end-to-end trainable framework. More specifically, the minimum cost multicut problem is first converted to an unconstrained binary cubic formulation where cycle consistency constraints are incorporated into the objective function. The new optimization problem can be viewed as a Conditional Random Field (CRF) in which the random variables are associated with the binary edge labels. Cycle constraints are introduced into the CRF as high-order potentials. A standard Convolutional Neural Network (CNN) provides the front-end features for the fully differentiable CRF. The parameters of both parts are optimized in an end-to-end manner. The efficacy of the proposed learning algorithm is demonstrated via experiments on clustering MNIST images and on the challenging task of real-world multi-people pose estimation.

PDF [BibTex]

PDF [BibTex]


Thumb xl ps web
Three-D Safari: Learning to Estimate Zebra Pose, Shape, and Texture from Images "In the Wild"

Zuffi, S., Kanazawa, A., Berger-Wolf, T., Black, M. J.

In International Conference on Computer Vision, October 2019 (inproceedings)

Abstract
We present the first method to perform automatic 3D pose, shape and texture capture of animals from images acquired in-the-wild. In particular, we focus on the problem of capturing 3D information about Grevy's zebras from a collection of images. The Grevy's zebra is one of the most endangered species in Africa, with only a few thousand individuals left. Capturing the shape and pose of these animals can provide biologists and conservationists with information about animal health and behavior. In contrast to research on human pose, shape and texture estimation, training data for endangered species is limited, the animals are in complex natural scenes with occlusion, they are naturally camouflaged, travel in herds, and look similar to each other. To overcome these challenges, we integrate the recent SMAL animal model into a network-based regression pipeline, which we train end-to-end on synthetically generated images with pose, shape, and background variation. Going beyond state-of-the-art methods for human shape and pose estimation, our method learns a shape space for zebras during training. Learning such a shape space from images using only a photometric loss is novel, and the approach can be used to learn shape in other settings with limited 3D supervision. Moreover, we couple 3D pose and shape prediction with the task of texture synthesis, obtaining a full texture map of the animal from a single image. We show that the predicted texture map allows a novel per-instance unsupervised optimization over the network features. This method, SMALST (SMAL with learned Shape and Texture) goes beyond previous work, which assumed manual keypoints and/or segmentation, to regress directly from pixels to 3D animal shape, pose and texture. Code and data are available at https://github.com/silviazuffi/smalst

code pdf supmat Project Page [BibTex]


Thumb xl iccv 2 cover crop small
Markerless Outdoor Human Motion Capture Using Multiple Autonomous Micro Aerial Vehicles

Saini, N., Price, E., Tallamraju, R., Enficiaud, R., Ludwig, R., Martinović, I., Ahmad, A., Black, M.

In International Conference on Computer Vision, October 2019 (inproceedings) Accepted

Abstract
Capturing human motion in natural scenarios means moving motion capture out of the lab and into the wild. Typical approaches rely on fixed, calibrated, cameras and reflective markers on the body, significantly limiting the motions that can be captured. To make motion capture truly unconstrained, we describe the first fully autonomous outdoor capture system based on flying vehicles. We use multiple micro-aerial-vehicles(MAVs), each equipped with a monocular RGB camera, an IMU, and a GPS receiver module. These detect the person, optimize their position, and localize themselves approximately. We then develop a markerless motion capture method that is suitable for this challenging scenario with a distant subject, viewed from above, with approximately calibrated and moving cameras. We combine multiple state-of-the-art 2D joint detectors with a 3D human body model and a powerful prior on human pose. We jointly optimize for 3D body pose and camera pose to robustly fit the 2D measurements. To our knowledge, this is the first successful demonstration of outdoor, full-body, markerless motion capture from autonomous flying vehicles.

Project Page [BibTex]


Thumb xl amass
AMASS: Archive of Motion Capture as Surface Shapes

Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G., Black, M. J.

International Conference on Computer Vision (ICCV), October 2019 (conference)

Abstract
Large datasets are the cornerstone of recent advances in computer vision using deep learning. In contrast, existing human motion capture (mocap) datasets are small and the motions limited, hampering progress on learning models of human motion. While there are many different datasets available, they each use a different parameterization of the body, making it difficult to integrate them into a single meta dataset. To address this, we introduce AMASS, a large and varied database of human motion that unifies 15 different optical marker-based mocap datasets by representing them within a common framework and parameterization. We achieve this using a new method, MoSh++, that converts mocap data into realistic 3D human meshes represented by a rigged body model. Here we use SMPL [26], which is widely used and provides a standard skeletal representation as well as a fully rigged surface mesh. The method works for arbitrary marker-sets, while recovering soft-tissue dynamics and realistic hand motion. We evaluate MoSh++ and tune its hyper-parameters using a new dataset of 4D body scans that are jointly recorded with marker-based mocap. The consistent representation of AMASS makes it readily useful for animation, visualization, and generating training data for deep learning. Our dataset is significantly richer than previous human motion collections, having more than 40 hours of motion data, spanning over 300 subjects, more than 11000 motions, and is available for research at https://amass.is.tue.mpg.de/.

code pdf suppl arxiv Project Page video [BibTex]


Thumb xl mosh heroes icon
Method for providing a three dimensional body model

Loper, M., Mahmood, N., Black, M.

September 2019, U.S.~Patent 10,417,818 (misc)

Abstract
A method for providing a three-dimensional body model which may be applied for an animation, based on a moving body, wherein the method comprises providing a parametric three-dimensional body model, which allows shape and pose variations; applying a standard set of body markers; optimizing the set of body markers by generating an additional set of body markers and applying the same for providing 3D coordinate marker signals for capturing shape and pose of the body and dynamics of soft tissue; and automatically providing an animation by processing the 3D coordinate marker signals in order to provide a personalized three-dimensional body model, based on estimated shape and an estimated pose of the body by means of predicted marker locations.

MoSh Project pdf [BibTex]


Thumb xl lala2
Learning to Train with Synthetic Humans

Hoffmann, D. T., Tzionas, D., Black, M. J., Tang, S.

In German Conference on Pattern Recognition (GCPR), September 2019 (inproceedings)

Abstract
Neural networks need big annotated datasets for training. However, manual annotation can be too expensive or even unfeasible for certain tasks, like multi-person 2D pose estimation with severe occlusions. A remedy for this is synthetic data with perfect ground truth. Here we explore two variations of synthetic data for this challenging problem; a dataset with purely synthetic humans, as well as a real dataset augmented with synthetic humans. We then study which approach better generalizes to real data, as well as the influence of virtual humans in the training loss. We observe that not all synthetic samples are equally informative for training, while the informative samples are different for each training stage. To exploit this observation, we employ an adversarial student-teacher framework; the teacher improves the student by providing the hardest samples for its current state as a challenge. Experiments show that this student-teacher framework outperforms all our baselines.

pdf suppl poster link (url) [BibTex]

pdf suppl poster link (url) [BibTex]


Thumb xl sap
The Influence of Visual Perspective on Body Size Estimation in Immersive Virtual Reality

Thaler, A., Pujades, S., Stefanucci, J. K., Creem-Regehr, S. H., Tesch, J., Black, M. J., Mohler, B. J.

In ACM Symposium on Applied Perception, September 2019 (inproceedings)

Abstract
The creation of realistic self-avatars that users identify with is important for many virtual reality applications. However, current approaches for creating biometrically plausible avatars that represent a particular individual require expertise and are time-consuming. We investigated the visual perception of an avatar’s body dimensions by asking males and females to estimate their own body weight and shape on a virtual body using a virtual reality avatar creation tool. In a method of adjustment task, the virtual body was presented in an HTC Vive head-mounted display either co-located with (first-person perspective) or facing (third-person perspective) the participants. Participants adjusted the body weight and dimensions of various body parts to match their own body shape and size. Both males and females underestimated their weight by 10-20% in the virtual body, but the estimates of the other body dimensions were relatively accurate and within a range of ±6%. There was a stronger influence of visual perspective on the estimates for males, but this effect was dependent on the amount of control over the shape of the virtual body, indicating that the results might be caused by where in the body the weight changes expressed themselves. These results suggest that this avatar creation tool could be used to allow participants to make a relatively accurate self-avatar in terms of adjusting body part dimensions, but not weight, and that the influence of visual perspective and amount of control needed over the body shape are likely gender-specific.

pdf [BibTex]

pdf [BibTex]


Thumb xl autonomous mocap cover image new
Active Perception based Formation Control for Multiple Aerial Vehicles

Tallamraju, R., Price, E., Ludwig, R., Karlapalem, K., Bülthoff, H. H., Black, M. J., Ahmad, A.

IEEE Robotics and Automation Letters, Robotics and Automation Letters, IEEE, August 2019 (article) Accepted

Abstract
We present a novel robotic front-end for autonomous aerial motion-capture (mocap) in outdoor environments. In previous work, we presented an approach for cooperative detection and tracking (CDT) of a subject using multiple micro-aerial vehicles (MAVs). However, it did not ensure optimal view-point configurations of the MAVs to minimize the uncertainty in the person's cooperatively tracked 3D position estimate. In this article, we introduce an active approach for CDT. In contrast to cooperatively tracking only the 3D positions of the person, the MAVs can actively compute optimal local motion plans, resulting in optimal view-point configurations, which minimize the uncertainty in the tracked estimate. We achieve this by decoupling the goal of active tracking into a quadratic objective and non-convex constraints corresponding to angular configurations of the MAVs w.r.t. the person. We derive this decoupling using Gaussian observation model assumptions within the CDT algorithm. We preserve convexity in optimization by embedding all the non-convex constraints, including those for dynamic obstacle avoidance, as external control inputs in the MPC dynamics. Multiple real robot experiments and comparisons involving 3 MAVs in several challenging scenarios are presented.

pdf Project Page [BibTex]

pdf Project Page [BibTex]


Thumb xl cover
Motion Planning for Multi-Mobile-Manipulator Payload Transport Systems

Tallamraju, R., Salunkhe, D., Rajappa, S., Ahmad, A., Karlapalem, K., Shah, S. V.

In 15th IEEE International Conference on Automation Science and Engineering, IEEE, August 2019 (inproceedings) Accepted

[BibTex]

[BibTex]


Thumb xl teaser results
Competitive Collaboration: Joint Unsupervised Learning of Depth, Camera Motion, Optical Flow and Motion Segmentation

Ranjan, A., Jampani, V., Balles, L., Kim, K., Sun, D., Wulff, J., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
We address the unsupervised learning of several interconnected problems in low-level vision: single view depth prediction, camera motion estimation, optical flow, and segmentation of a video into the static scene and moving regions. Our key insight is that these four fundamental vision problems are coupled through geometric constraints. Consequently, learning to solve them together simplifies the problem because the solutions can reinforce each other. We go beyond previous work by exploiting geometry more explicitly and segmenting the scene into static and moving regions. To that end, we introduce Competitive Collaboration, a framework that facilitates the coordinated training of multiple specialized neural networks to solve complex problems. Competitive Collaboration works much like expectation-maximization, but with neural networks that act as both competitors to explain pixels that correspond to static or moving regions, and as collaborators through a moderator that assigns pixels to be either static or independently moving. Our novel method integrates all these problems in a common framework and simultaneously reasons about the segmentation of the scene into moving objects and the static background, the camera motion, depth of the static scene structure, and the optical flow of moving objects. Our model is trained without any supervision and achieves state-of-the-art performance among joint unsupervised methods on all sub-problems.

Paper link (url) Project Page Project Page [BibTex]


Thumb xl cvpr2019 demo v2.001
Local Temporal Bilinear Pooling for Fine-grained Action Parsing

Zhang, Y., Tang, S., Muandet, K., Jarvers, C., Neumann, H.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Fine-grained temporal action parsing is important in many applications, such as daily activity understanding, human motion analysis, surgical robotics and others requiring subtle and precise operations in a long-term period. In this paper we propose a novel bilinear pooling operation, which is used in intermediate layers of a temporal convolutional encoder-decoder net. In contrast to other work, our proposed bilinear pooling is learnable and hence can capture more complex local statistics than the conventional counterpart. In addition, we introduce exact lower-dimension representations of our bilinear forms, so that the dimensionality is reduced with neither information loss nor extra computation. We perform intensive experiments to quantitatively analyze our model and show the superior performances to other state-of-the-art work on various datasets.

Code video demo pdf link (url) [BibTex]

Code video demo pdf link (url) [BibTex]


Thumb xl ringnet
Learning to Regress 3D Face Shape and Expression from an Image without 3D Supervision

Sanyal, S., Bolkart, T., Feng, H., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
The estimation of 3D face shape from a single image must be robust to variations in lighting, head pose, expression, facial hair, makeup, and occlusions. Robustness requires a large training set of in-the-wild images, which by construction, lack ground truth 3D shape. To train a network without any 2D-to-3D supervision, we present RingNet, which learns to compute 3D face shape from a single image. Our key observation is that an individual’s face shape is constant across images, regardless of expression, pose, lighting, etc. RingNet leverages multiple images of a person and automatically detected 2D face features. It uses a novel loss that encourages the face shape to be similar when the identity is the same and different for different people. We achieve invariance to expression by representing the face using the FLAME model. Once trained, our method takes a single image and outputs the parameters of FLAME, which can be readily animated. Additionally we create a new database of faces “not quite in-the-wild” (NoW) with 3D head scans and high-resolution images of the subjects in a wide variety of conditions. We evaluate publicly available methods and find that RingNet is more accurate than methods that use 3D supervision. The dataset, model, and results are available for research purposes.

code pdf preprint link (url) Project Page [BibTex]


Thumb xl obman new
Learning Joint Reconstruction of Hands and Manipulated Objects

Hasson, Y., Varol, G., Tzionas, D., Kalevatykh, I., Black, M. J., Laptev, I., Schmid, C.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Estimating hand-object manipulations is essential for interpreting and imitating human actions. Previous work has made significant progress towards reconstruction of hand poses and object shapes in isolation. Yet, reconstructing hands and objects during manipulation is a more challenging task due to significant occlusions of both the hand and object. While presenting challenges, manipulations may also simplify the problem since the physics of contact restricts the space of valid hand-object configurations. For example, during manipulation, the hand and object should be in contact but not interpenetrate. In this work, we regularize the joint reconstruction of hands and objects with manipulation constraints. We present an end-to-end learnable model that exploits a novel contact loss that favors physically plausible hand-object constellations. Our approach improves grasp quality metrics over baselines, using RGB images as input. To train and evaluate the model, we also propose a new large-scale synthetic dataset, ObMan, with hand-object manipulations. We demonstrate the transferability of ObMan-trained models to real data.

pdf suppl poster link (url) Project Page Project Page [BibTex]

pdf suppl poster link (url) Project Page Project Page [BibTex]


Thumb xl smplx teaser watermark
Expressive Body Capture: 3D Hands, Face, and Body from a Single Image

Pavlakos, G., Choutas, V., Ghorbani, N., Bolkart, T., Osman, A. A. A., Tzionas, D., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
To facilitate the analysis of human actions, interactions and emotions, we compute a 3D model of human body pose, hand pose, and facial expression from a single monocular image. To achieve this, we use thousands of 3D scans to train a new, unified, 3D model of the human body, SMPL-X, that extends SMPL with fully articulated hands and an expressive face. Learning to regress the parameters of SMPL-X directly from images is challenging without paired images and 3D ground truth. Consequently, we follow the approach of SMPLify, which estimates 2D features and then optimizes model parameters to fit the features. We improve on SMPLify in several significant ways: (1) we detect 2D features corresponding to the face, hands, and feet and fit the full SMPL-X model to these; (2) we train a new neural network pose prior using a large MoCap dataset; (3) we define a new interpenetration penalty that is both fast and accurate; (4) we automatically detect gender and the appropriate body models (male, female, or neutral); (5) our PyTorch implementation achieves a speedup of more than 8x over Chumpy. We use the new method, SMPLify-X, to fit SMPL-X to both controlled images and images in the wild. We evaluate 3D accuracy on a new curated dataset comprising 100 images with pseudo ground-truth. This is a step towards automatic expressive human capture from monocular RGB data. The models, code, and data are available for research purposes at https://smpl-x.is.tue.mpg.de.

video code pdf suppl poster link (url) Project Page [BibTex]


Thumb xl voca
Capture, Learning, and Synthesis of 3D Speaking Styles

Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), June 2019 (inproceedings)

Abstract
Audio-driven 3D facial animation has been widely explored, but achieving realistic, human-like performance is still unsolved. This is due to the lack of available 3D datasets, models, and standard evaluation metrics. To address this, we introduce a unique 4D face dataset with about 29 minutes of 4D scans captured at 60 fps and synchronized audio from 12 speakers. We then train a neural network on our dataset that factors identity from facial motion. The learned model, VOCA (Voice Operated Character Animation) takes any speech signal as input—even speech in languages other than English—and realistically animates a wide range of adult faces. Conditioning on subject labels during training allows the model to learn a variety of realistic speaking styles. VOCA also provides animator controls to alter speaking style, identity-dependent facial shape, and pose (i.e. head, jaw, and eyeball rotations) during animation. To our knowledge, VOCA is the only realistic 3D facial animation model that is readily applicable to unseen subjects without retargeting. This makes VOCA suitable for tasks like in-game video, virtual reality avatars, or any scenario in which the speaker, speech, or language is not known in advance. We make the dataset and model available for research purposes at http://voca.is.tue.mpg.de.

code Project Page video paper [BibTex]

code Project Page video paper [BibTex]


Thumb xl hessepami
Learning and Tracking the 3D Body Shape of Freely Moving Infants from RGB-D sequences

Hesse, N., Pujades, S., Black, M., Arens, M., Hofmann, U., Schroeder, S.

Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019 (article)

Abstract
Statistical models of the human body surface are generally learned from thousands of high-quality 3D scans in predefined poses to cover the wide variety of human body shapes and articulations. Acquisition of such data requires expensive equipment, calibration procedures, and is limited to cooperative subjects who can understand and follow instructions, such as adults. We present a method for learning a statistical 3D Skinned Multi-Infant Linear body model (SMIL) from incomplete, low-quality RGB-D sequences of freely moving infants. Quantitative experiments show that SMIL faithfully represents the RGB-D data and properly factorizes the shape and pose of the infants. To demonstrate the applicability of SMIL, we fit the model to RGB-D sequences of freely moving infants and show, with a case study, that our method captures enough motion detail for General Movements Assessment (GMA), a method used in clinical practice for early detection of neurodevelopmental disorders in infants. SMIL provides a new tool for analyzing infant shape and movement and is a step towards an automated system for GMA.

pdf Journal DOI [BibTex]

pdf Journal DOI [BibTex]


Thumb xl kenny
Perceptual Effects of Inconsistency in Human Animations

Kenny, S., Mahmood, N., Honda, C., Black, M. J., Troje, N. F.

ACM Trans. Appl. Percept., 16(1):2:1-2:18, Febuary 2019 (article)

Abstract
The individual shape of the human body, including the geometry of its articulated structure and the distribution of weight over that structure, influences the kinematics of a person’s movements. How sensitive is the visual system to inconsistencies between shape and motion introduced by retargeting motion from one person onto the shape of another? We used optical motion capture to record five pairs of male performers with large differences in body weight, while they pushed, lifted, and threw objects. From these data, we estimated both the kinematics of the actions as well as the performer’s individual body shape. To obtain consistent and inconsistent stimuli, we created animated avatars by combining the shape and motion estimates from either a single performer or from different performers. Using these stimuli we conducted three experiments in an immersive virtual reality environment. First, a group of participants detected which of two stimuli was inconsistent. Performance was very low, and results were only marginally significant. Next, a second group of participants rated perceived attractiveness, eeriness, and humanness of consistent and inconsistent stimuli, but these judgements of animation characteristics were not affected by consistency of the stimuli. Finally, a third group of participants rated properties of the objects rather than of the performers. Here, we found strong influences of shape-motion inconsistency on perceived weight and thrown distance of objects. This suggests that the visual system relies on its knowledge of shape and motion and that these components are assimilated into an altered perception of the action outcome. We propose that the visual system attempts to resist inconsistent interpretations of human animations. Actions involving object manipulations present an opportunity for the visual system to reinterpret the introduced inconsistencies as a change in the dynamics of an object rather than as an unexpected combination of body shape and body motion.

publisher pdf DOI [BibTex]

publisher pdf DOI [BibTex]


Thumb xl webteaser
Perceiving Systems (2016-2018)
Scientific Advisory Board Report, 2019 (misc)

pdf [BibTex]

pdf [BibTex]


Thumb xl virtualcaliper
The Virtual Caliper: Rapid Creation of Metrically Accurate Avatars from 3D Measurements

Pujades, S., Mohler, B., Thaler, A., Tesch, J., Mahmood, N., Hesse, N., Bülthoff, H. H., Black, M. J.

IEEE Transactions on Visualization and Computer Graphics, 25, pages: 1887,1897, IEEE, 2019 (article)

Abstract
Creating metrically accurate avatars is important for many applications such as virtual clothing try-on, ergonomics, medicine, immersive social media, telepresence, and gaming. Creating avatars that precisely represent a particular individual is challenging however, due to the need for expensive 3D scanners, privacy issues with photographs or videos, and difficulty in making accurate tailoring measurements. We overcome these challenges by creating “The Virtual Caliper”, which uses VR game controllers to make simple measurements. First, we establish what body measurements users can reliably make on their own body. We find several distance measurements to be good candidates and then verify that these are linearly related to 3D body shape as represented by the SMPL body model. The Virtual Caliper enables novice users to accurately measure themselves and create an avatar with their own body shape. We evaluate the metric accuracy relative to ground truth 3D body scan data, compare the method quantitatively to other avatar creation tools, and perform extensive perceptual studies. We also provide a software application to the community that enables novices to rapidly create avatars in fewer than five minutes. Not only is our approach more rapid than existing methods, it exports a metrically accurate 3D avatar model that is rigged and skinned.

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]

Project Page IEEE Open Access IEEE Open Access PDF DOI [BibTex]


Thumb xl model
Resisting Adversarial Attacks using Gaussian Mixture Variational Autoencoders

Ghosh, P., Losalka, A., Black, M. J.

In Proc. AAAI, 2019 (inproceedings)

Abstract
Susceptibility of deep neural networks to adversarial attacks poses a major theoretical and practical challenge. All efforts to harden classifiers against such attacks have seen limited success till now. Two distinct categories of samples against which deep neural networks are vulnerable, ``adversarial samples" and ``fooling samples", have been tackled separately so far due to the difficulty posed when considered together. In this work, we show how one can defend against them both under a unified framework. Our model has the form of a variational autoencoder with a Gaussian mixture prior on the latent variable, such that each mixture component corresponds to a single class. We show how selective classification can be performed using this model, thereby causing the adversarial objective to entail a conflict. The proposed method leads to the rejection of adversarial samples instead of misclassification, while maintaining high precision and recall on test data. It also inherently provides a way of learning a selective classifier in a semi-supervised scenario, which can similarly resist adversarial attacks. We further show how one can reclassify the detected adversarial samples by iterative optimization.

link (url) Project Page [BibTex]


Thumb xl rae
From Variational to Deterministic Autoencoders

Ghosh*, P., Sajjadi*, M. S. M., Vergari, A., Black, M. J., Schölkopf, B.

2019, *equal contribution (conference) Submitted

Abstract
Variational Autoencoders (VAEs) provide a theoretically-backed framework for deep generative models. However, they often produce “blurry” images, which is linked to their training objective. Sampling in the most popular implementation, the Gaussian VAE, can be interpreted as simply injecting noise to the input of a deterministic decoder. In practice, this simply enforces a smooth latent space structure. We challenge the adoption of the full VAE framework on this specific point in favor of a simpler, deterministic one. Specifically, we investigate how substituting stochasticity with other explicit and implicit regularization schemes can lead to a meaningful latent space without having to force it to conform to an arbitrarily chosen prior. To retrieve a generative mechanism for sampling new data points, we propose to employ an efficient ex-post density estimation step that can be readily adopted both for the proposed deterministic autoencoders as well as to improve sample quality of existing VAEs. We show in a rigorous empirical study that regularized deterministic autoencoding achieves state-of-the-art sample quality on the common MNIST, CIFAR-10 and CelebA datasets.

arXiv [BibTex]

2014


Thumb xl thumb 9780262028370
Advanced Structured Prediction

Nowozin, S., Gehler, P. V., Jancsary, J., Lampert, C. H.

Advanced Structured Prediction, pages: 432, Neural Information Processing Series, MIT Press, November 2014 (book)

Abstract
The goal of structured prediction is to build machine learning models that predict relational information that itself has structure, such as being composed of multiple interrelated parts. These models, which reflect prior knowledge, task-specific relations, and constraints, are used in fields including computer vision, speech recognition, natural language processing, and computational biology. They can carry out such tasks as predicting a natural language sentence, or segmenting an image into meaningful components. These models are expressive and powerful, but exact computation is often intractable. A broad research effort in recent years has aimed at designing structured prediction models and approximate inference and learning procedures that are computationally efficient. This volume offers an overview of this recent research in order to make the work accessible to a broader research community. The chapters, by leading researchers in the field, cover a range of topics, including research trends, the linear programming relaxation approach, innovations in probabilistic modeling, recent theoretical progress, and resource-aware learning.

publisher link (url) [BibTex]

2014

publisher link (url) [BibTex]


Thumb xl mosh heroes icon
MoSh: Motion and Shape Capture from Sparse Markers

Loper, M. M., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 33(6):220:1-220:13, ACM, New York, NY, USA, November 2014 (article)

Abstract
Marker-based motion capture (mocap) is widely criticized as producing lifeless animations. We argue that important information about body surface motion is present in standard marker sets but is lost in extracting a skeleton. We demonstrate a new approach called MoSh (Motion and Shape capture), that automatically extracts this detail from mocap data. MoSh estimates body shape and pose together using sparse marker data by exploiting a parametric model of the human body. In contrast to previous work, MoSh solves for the marker locations relative to the body and estimates accurate body shape directly from the markers without the use of 3D scans; this effectively turns a mocap system into an approximate body scanner. MoSh is able to capture soft tissue motions directly from markers by allowing body shape to vary over time. We evaluate the effect of different marker sets on pose and shape accuracy and propose a new sparse marker set for capturing soft-tissue motion. We illustrate MoSh by recovering body shape, pose, and soft-tissue motion from archival mocap data and using this to produce animations with subtlety and realism. We also show soft-tissue motion retargeting to new characters and show how to magnify the 3D deformations of soft tissue to create animations with appealing exaggerations.

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]

pdf video data pdf from publisher link (url) DOI Project Page Project Page Project Page [BibTex]


Thumb xl thumb grouped teaser
Hough-based Object Detection with Grouped Features

Srikantha, A., Gall, J.

International Conference on Image Processing, pages: 1653-1657, Paris, France, October 2014 (conference)

Abstract
Hough-based voting approaches have been successfully applied to object detection. While these methods can be efficiently implemented by random forests, they estimate the probability for an object hypothesis for each feature independently. In this work, we address this problem by grouping features in a local neighborhood to obtain a better estimate of the probability. To this end, we propose oblique classification-regression forests that combine features of different trees. We further investigate the benefit of combining independent and grouped features and evaluate the approach on RGB and RGB-D datasets.

pdf poster DOI Project Page [BibTex]

pdf poster DOI Project Page [BibTex]


Thumb xl thumb schoenbein2014iros
Omnidirectional 3D Reconstruction in Augmented Manhattan Worlds

Schoenbein, M., Geiger, A.

International Conference on Intelligent Robots and Systems, pages: 716 - 723, IEEE, Chicago, IL, USA, October 2014 (conference)

Abstract
This paper proposes a method for high-quality omnidirectional 3D reconstruction of augmented Manhattan worlds from catadioptric stereo video sequences. In contrast to existing works we do not rely on constructing virtual perspective views, but instead propose to optimize depth jointly in a unified omnidirectional space. Furthermore, we show that plane-based prior models can be applied even though planes in 3D do not project to planes in the omnidirectional domain. Towards this goal, we propose an omnidirectional slanted-plane Markov random field model which relies on plane hypotheses extracted using a novel voting scheme for 3D planes in omnidirectional space. To quantitatively evaluate our method we introduce a dataset which we have captured using our autonomous driving platform AnnieWAY which we equipped with two horizontally aligned catadioptric cameras and a Velodyne HDL-64E laser scanner for precise ground truth depth measurements. As evidenced by our experiments, the proposed method clearly benefits from the unified view and significantly outperforms existing stereo matching techniques both quantitatively and qualitatively. Furthermore, our method is able to reduce noise and the obtained depth maps can be represented very compactly by a small number of image segments and plane parameters.

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl sap copy
Can I recognize my body’s weight? The influence of shape and texture on the perception of self

Piryankova, I., Stefanucci, J., Romero, J., de la Rosa, S., Black, M., Mohler, B.

ACM Transactions on Applied Perception for the Symposium on Applied Perception, 11(3):13:1-13:18, September 2014 (article)

Abstract
The goal of this research was to investigate women’s sensitivity to changes in their perceived weight by altering the body mass index (BMI) of the participants’ personalized avatars displayed on a large-screen immersive display. We created the personalized avatars with a full-body 3D scanner that records both the participants’ body geometry and texture. We altered the weight of the personalized avatars to produce changes in BMI while keeping height, arm length and inseam fixed and exploited the correlation between body geometry and anthropometric measurements encapsulated in a statistical body shape model created from thousands of body scans. In a 2x2 psychophysical experiment, we investigated the relative importance of visual cues, namely shape (own shape vs. an average female body shape with equivalent height and BMI to the participant) and texture (own photo-realistic texture or checkerboard pattern texture) on the ability to accurately perceive own current body weight (by asking them ‘Is the avatar the same weight as you?’). Our results indicate that shape (where height and BMI are fixed) had little effect on the perception of body weight. Interestingly, the participants perceived their body weight veridically when they saw their own photo-realistic texture and significantly underestimated their body weight when the avatar had a checkerboard patterned texture. The range that the participants accepted as their own current weight was approximately a 0.83 to −6.05 BMI% change tolerance range around their perceived weight. Both the shape and the texture had an effect on the reported similarity of the body parts and the whole avatar to the participant’s body. This work has implications for new measures for patients with body image disorders, as well as researchers interested in creating personalized avatars for games, training applications or virtual reality.

pdf DOI Project Page Project Page [BibTex]

pdf DOI Project Page Project Page [BibTex]


Thumb xl eccv14
Image-based 4-d Reconstruction Using 3-d Change Detection

Ulusoy, A. O., Mundy, J. L.

In Computer Vision – ECCV 2014, pages: 31-45, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
This paper describes an approach to reconstruct the complete history of a 3-d scene over time from imagery. The proposed approach avoids rebuilding 3-d models of the scene at each time instant. Instead, the approach employs an initial 3-d model which is continuously updated with changes in the environment to form a full 4-d representation. This updating scheme is enabled by a novel algorithm that infers 3-d changes with respect to the model at one time step from images taken at a subsequent time step. This algorithm can effectively detect changes even when the illumination conditions between image collections are significantly different. The performance of the proposed framework is demonstrated on four challenging datasets in terms of 4-d modeling accuracy as well as quantitative evaluation of 3-d change detection.

video pdf supplementary DOI [BibTex]

video pdf supplementary DOI [BibTex]


Thumb xl fop
Human Pose Estimation with Fields of Parts

Kiefel, M., Gehler, P.

In Computer Vision – ECCV 2014, LNCS 8693, pages: 331-346, Lecture Notes in Computer Science, (Editors: Fleet, David and Pajdla, Tomas and Schiele, Bernt and Tuytelaars, Tinne), Springer, September 2014 (inproceedings)

Abstract
This paper proposes a new formulation of the human pose estimation problem. We present the Fields of Parts model, a binary Conditional Random Field model designed to detect human body parts of articulated people in single images. The Fields of Parts model is inspired by the idea of Pictorial Structures, it models local appearance and joint spatial configuration of the human body. However the underlying graph structure is entirely different. The idea is simple: we model the presence and absence of a body part at every possible position, orientation, and scale in an image with a binary random variable. This results into a vast number of random variables, however, we show that approximate inference in this model is efficient. Moreover we can encode the very same appearance and spatial structure as in Pictorial Structures models. This approach allows us to combine ideas from segmentation and pose estimation into a single model. The Fields of Parts model can use evidence from the background, include local color information, and it is connected more densely than a kinematic chain structure. On the challenging Leeds Sports Poses dataset we improve over the Pictorial Structures counterpart by 5.5% in terms of Average Precision of Keypoints (APK).

website pdf DOI Project Page [BibTex]

website pdf DOI Project Page [BibTex]


Thumb xl thumb thumb2
Capturing Hand Motion with an RGB-D Sensor, Fusing a Generative Model with Salient Points

Tzionas, D., Srikantha, A., Aponte, P., Gall, J.

In German Conference on Pattern Recognition (GCPR), pages: 1-13, Lecture Notes in Computer Science, Springer, September 2014 (inproceedings)

Abstract
Hand motion capture has been an active research topic in recent years, following the success of full-body pose tracking. Despite similarities, hand tracking proves to be more challenging, characterized by a higher dimensionality, severe occlusions and self-similarity between fingers. For this reason, most approaches rely on strong assumptions, like hands in isolation or expensive multi-camera systems, that limit the practical use. In this work, we propose a framework for hand tracking that can capture the motion of two interacting hands using only a single, inexpensive RGB-D camera. Our approach combines a generative model with collision detection and discriminatively learned salient points. We quantitatively evaluate our approach on 14 new sequences with challenging interactions.

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]

pdf Supplementary pdf Supplementary Material Project Page DOI Project Page [BibTex]


Thumb xl opendr
OpenDR: An Approximate Differentiable Renderer

Loper, M. M., Black, M. J.

In Computer Vision – ECCV 2014, 8695, pages: 154-169, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Inverse graphics attempts to take sensor data and infer 3D geometry, illumination, materials, and motions such that a graphics renderer could realistically reproduce the observed scene. Renderers, however, are designed to solve the forward process of image synthesis. To go in the other direction, we propose an approximate di fferentiable renderer (DR) that explicitly models the relationship between changes in model parameters and image observations. We describe a publicly available OpenDR framework that makes it easy to express a forward graphics model and then automatically obtain derivatives with respect to the model parameters and to optimize over them. Built on a new autodiff erentiation package and OpenGL, OpenDR provides a local optimization method that can be incorporated into probabilistic programming frameworks. We demonstrate the power and simplicity of programming with OpenDR by using it to solve the problem of estimating human body shape from Kinect depth and RGB data.

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]

pdf Code Chumpy Supplementary video of talk DOI Project Page [BibTex]


Thumb xl teaser 200 10
Discovering Object Classes from Activities

Srikantha, A., Gall, J.

In European Conference on Computer Vision, 8694, pages: 415-430, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
In order to avoid an expensive manual labeling process or to learn object classes autonomously without human intervention, object discovery techniques have been proposed that extract visual similar objects from weakly labelled videos. However, the problem of discovering small or medium sized objects is largely unexplored. We observe that videos with activities involving human-object interactions can serve as weakly labelled data for such cases. Since neither object appearance nor motion is distinct enough to discover objects in these videos, we propose a framework that samples from a space of algorithms and their parameters to extract sequences of object proposals. Furthermore, we model similarity of objects based on appearance and functionality, which is derived from human and object motion. We show that functionality is an important cue for discovering objects from activities and demonstrate the generality of the model on three challenging RGB-D and RGB datasets.

pdf anno poster DOI Project Page [BibTex]

pdf anno poster DOI Project Page [BibTex]


Thumb xl ps page panel
Probabilistic Progress Bars

Kiefel, M., Schuler, C., Hennig, P.

In Conference on Pattern Recognition (GCPR), 8753, pages: 331-341, Lecture Notes in Computer Science, (Editors: Jiang, X., Hornegger, J., and Koch, R.), Springer, September 2014 (inproceedings)

Abstract
Predicting the time at which the integral over a stochastic process reaches a target level is a value of interest in many applications. Often, such computations have to be made at low cost, in real time. As an intuitive example that captures many features of this problem class, we choose progress bars, a ubiquitous element of computer user interfaces. These predictors are usually based on simple point estimators, with no error modelling. This leads to fluctuating behaviour confusing to the user. It also does not provide a distribution prediction (risk values), which are crucial for many other application areas. We construct and empirically evaluate a fast, constant cost algorithm using a Gauss-Markov process model which provides more information to the user.

website+code pdf DOI [BibTex]

website+code pdf DOI [BibTex]


Thumb xl new teaser aligned
Optical Flow Estimation with Channel Constancy

Sevilla-Lara, L., Sun, D., Learned-Miller, E. G., Black, M. J.

In Computer Vision – ECCV 2014, 8689, pages: 423-438, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Large motions remain a challenge for current optical flow algorithms. Traditionally, large motions are addressed using multi-resolution representations like Gaussian pyramids. To deal with large displacements, many pyramid levels are needed and, if an object is small, it may be invisible at the highest levels. To address this we decompose images using a channel representation (CR) and replace the standard brightness constancy assumption with a descriptor constancy assumption. CRs can be seen as an over-segmentation of the scene into layers based on some image feature. If the appearance of a foreground object differs from the background then its descriptor will be different and they will be represented in different layers.We create a pyramid by smoothing these layers, without mixing foreground and background or losing small objects. Our method estimates more accurate flow than the baseline on the MPI-Sintel benchmark, especially for fast motions and near motion boundaries.

pdf DOI [BibTex]

pdf DOI [BibTex]


Thumb xl blurreccv
Modeling Blurred Video with Layers

Wulff, J., Black, M. J.

In Computer Vision – ECCV 2014, 8694, pages: 236-252, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Videos contain complex spatially-varying motion blur due to the combination of object motion, camera motion, and depth variation with fi nite shutter speeds. Existing methods to estimate optical flow, deblur the images, and segment the scene fail in such cases. In particular, boundaries between di fferently moving objects cause problems, because here the blurred images are a combination of the blurred appearances of multiple surfaces. We address this with a novel layered model of scenes in motion. From a motion-blurred video sequence, we jointly estimate the layer segmentation and each layer's appearance and motion. Since the blur is a function of the layer motion and segmentation, it is completely determined by our generative model. Given a video, we formulate the optimization problem as minimizing the pixel error between the blurred frames and images synthesized from the model, and solve it using gradient descent. We demonstrate our approach on synthetic and real sequences.

pdf Supplemental Video Data DOI Project Page Project Page [BibTex]

pdf Supplemental Video Data DOI Project Page Project Page [BibTex]


Thumb xl teaser
Intrinsic Video

Kong, N., Gehler, P. V., Black, M. J.

In Computer Vision – ECCV 2014, 8690, pages: 360-375, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Intrinsic images such as albedo and shading are valuable for later stages of visual processing. Previous methods for extracting albedo and shading use either single images or images together with depth data. Instead, we define intrinsic video estimation as the problem of extracting temporally coherent albedo and shading from video alone. Our approach exploits the assumption that albedo is constant over time while shading changes slowly. Optical flow aids in the accurate estimation of intrinsic video by providing temporal continuity as well as putative surface boundaries. Additionally, we find that the estimated albedo sequence can be used to improve optical flow accuracy in sequences with changing illumination. The approach makes only weak assumptions about the scene and we show that it substantially outperforms existing single-frame intrinsic image methods. We evaluate this quantitatively on synthetic sequences as well on challenging natural sequences with complex geometry, motion, and illumination.

pdf Supplementary Video DOI Project Page Project Page [BibTex]

pdf Supplementary Video DOI Project Page Project Page [BibTex]


Thumb xl miccai
Automated Detection of New or Evolving Melanocytic Lesions Using a 3D Body Model

Bogo, F., Romero, J., Peserico, E., Black, M. J.

In Medical Image Computing and Computer-Assisted Intervention (MICCAI), 8673, pages: 593-600, Lecture Notes in Computer Science, (Editors: Golland, Polina and Hata, Nobuhiko and Barillot, Christian and Hornegger, Joachim and Howe, Robert), Spring International Publishing, September 2014 (inproceedings)

Abstract
Detection of new or rapidly evolving melanocytic lesions is crucial for early diagnosis and treatment of melanoma.We propose a fully automated pre-screening system for detecting new lesions or changes in existing ones, on the order of 2 - 3mm, over almost the entire body surface. Our solution is based on a multi-camera 3D stereo system. The system captures 3D textured scans of a subject at diff erent times and then brings these scans into correspondence by aligning them with a learned, parametric, non-rigid 3D body model. This means that captured skin textures are in accurate alignment across scans, facilitating the detection of new or changing lesions. The integration of lesion segmentation with a deformable 3D body model is a key contribution that makes our approach robust to changes in illumination and subject pose.

pdf Poster DOI Project Page [BibTex]

pdf Poster DOI Project Page [BibTex]


Thumb xl hongwmpt eccv2014
Tracking using Multilevel Quantizations

Hong, Z., Wang, C., Mei, X., Prokhorov, D., Tao, D.

In Computer Vision – ECCV 2014, 8694, pages: 155-171, Lecture Notes in Computer Science, (Editors: D. Fleet and T. Pajdla and B. Schiele and T. Tuytelaars ), Springer International Publishing, September 2014 (inproceedings)

Abstract
Most object tracking methods only exploit a single quantization of an image space: pixels, superpixels, or bounding boxes, each of which has advantages and disadvantages. It is highly unlikely that a common optimal quantization level, suitable for tracking all objects in all environments, exists. We therefore propose a hierarchical appearance representation model for tracking, based on a graphical model that exploits shared information across multiple quantization levels. The tracker aims to find the most possible position of the target by jointly classifying the pixels and superpixels and obtaining the best configuration across all levels. The motion of the bounding box is taken into consideration, while Online Random Forests are used to provide pixel- and superpixel-level quantizations and progressively updated on-the-fly. By appropriately considering the multilevel quantizations, our tracker exhibits not only excellent performance in non-rigid object deformation handling, but also its robustness to occlusions. A quantitative evaluation is conducted on two benchmark datasets: a non-rigid object tracking dataset (11 sequences) and the CVPR2013 tracking benchmark (50 sequences). Experimental results show that our tracker overcomes various tracking challenges and is superior to a number of other popular tracking methods.

pdf DOI [BibTex]

pdf DOI [BibTex]


no image
3D to 2D bijection for spherical objects under equidistant fisheye projection

Ahmad, A., Xavier, J., Santos-Victor, J., Lima, P.

Computer Vision and Image Understanding, 125, pages: 172-183, August 2014 (article)

Abstract
The core problem addressed in this article is the 3D position detection of a spherical object of known-radius in a single image frame, obtained by a dioptric vision system consisting of only one fisheye lens camera that follows equidistant projection model. The central contribution is a bijection principle between a known-radius spherical object’s 3D world position and its 2D projected image curve, that we prove, thus establishing that for every possible 3D world position of the spherical object, there exists a unique curve on the image plane if the object is projected through a fisheye lens that follows equidistant projection model. Additionally, we present a setup for the experimental verification of the principle’s correctness. In previously published works we have applied this principle to detect and subsequently track a known-radius spherical object.

DOI [BibTex]

DOI [BibTex]


Thumb xl fancy rgb
Breathing Life into Shape: Capturing, Modeling and Animating 3D Human Breathing

Tsoli, A., Mahmood, N., Black, M. J.

ACM Transactions on Graphics, (Proc. SIGGRAPH), 33(4):52:1-52:11, ACM, New York, NY, July 2014 (article)

Abstract
Modeling how the human body deforms during breathing is important for the realistic animation of lifelike 3D avatars. We learn a model of body shape deformations due to breathing for different breathing types and provide simple animation controls to render lifelike breathing regardless of body shape. We capture and align high-resolution 3D scans of 58 human subjects. We compute deviations from each subject’s mean shape during breathing, and study the statistics of such shape changes for different genders, body shapes, and breathing types. We use the volume of the registered scans as a proxy for lung volume and learn a novel non-linear model relating volume and breathing type to 3D shape deformations and pose changes. We then augment a SCAPE body model so that body shape is determined by identity, pose, and the parameters of the breathing model. These parameters provide an intuitive interface with which animators can synthesize 3D human avatars with realistic breathing motions. We also develop a novel interface for animating breathing using a spirometer, which measures the changes in breathing volume of a “breath actor.”

pdf video link (url) DOI Project Page Project Page Project Page [BibTex]


no image
The RoCKIn@Home User Story

Schneider, S., Hegger, F., Kraetzschmar, G., Amigoni, F., Berghofer, J., Bischoff, R., Bonarini, A., Dwiputra, R., Iocchi, L., Lima, P., Matteucci, M., Nardi, D., Awaad, I., Ahmad, A., Fontana, G., Hochgeschwender, N., Schiaffonati, V.

June 2014 (conference)

[BibTex]

[BibTex]


no image
Overview on the RoCKIn@Work Challenge

Dwiputra, R., Berghofer, J., Amigoni, F., Bischoff, R., Bonarini, A., Iocchi, L., Kraetzschmar, G., Lima, P., Matteucci, M., Nardi, D., Ahmad, A., Awaad, I., Fontana, G., Hegger, F., Hochgeschwender, N., Schiaffonati, V., Schneider, S.

June 2014 (conference)

[BibTex]

[BibTex]


Thumb xl thumb thumb
Human Pose Estimation: New Benchmark and State of the Art Analysis

Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3686 - 3693, IEEE, June 2014 (inproceedings)

pdf DOI Project Page Project Page Project Page [BibTex]

pdf DOI Project Page Project Page Project Page [BibTex]


Thumb xl faust
FAUST: Dataset and evaluation for 3D mesh registration

(Dataset Award, Eurographics Symposium on Geometry Processing (SGP), 2016)

Bogo, F., Romero, J., Loper, M., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 3794 -3801, Columbus, Ohio, USA, June 2014 (inproceedings)

Abstract
New scanning technologies are increasing the importance of 3D mesh data and the need for algorithms that can reliably align it. Surface registration is important for building full 3D models from partial scans, creating statistical shape models, shape retrieval, and tracking. The problem is particularly challenging for non-rigid and articulated objects like human bodies. While the challenges of real-world data registration are not present in existing synthetic datasets, establishing ground-truth correspondences for real 3D scans is difficult. We address this with a novel mesh registration technique that combines 3D shape and appearance information to produce high-quality alignments. We define a new dataset called FAUST that contains 300 scans of 10 people in a wide range of poses together with an evaluation methodology. To achieve accurate registration, we paint the subjects with high-frequency textures and use an extensive validation process to ensure accurate ground truth. We find that current shape registration methods have trouble with this real-world data. The dataset and evaluation website are available for research purposes at http://faust.is.tue.mpg.de.

pdf Video Dataset Poster Talk DOI Project Page Project Page Project Page [BibTex]

pdf Video Dataset Poster Talk DOI Project Page Project Page Project Page [BibTex]


Thumb xl modeltransport
Model Transport: Towards Scalable Transfer Learning on Manifolds

Freifeld, O., Hauberg, S., Black, M. J.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1378 -1385, Columbus, Ohio, USA, June 2014 (inproceedings)

Abstract
We consider the intersection of two research fields: transfer learning and statistics on manifolds. In particular, we consider, for manifold-valued data, transfer learning of tangent-space models such as Gaussians distributions, PCA, regression, or classifiers. Though one would hope to simply use ordinary Rn-transfer learning ideas, the manifold structure prevents it. We overcome this by basing our method on inner-product-preserving parallel transport, a well-known tool widely used in other problems of statistics on manifolds in computer vision. At first, this straightforward idea seems to suffer from an obvious shortcoming: Transporting large datasets is prohibitively expensive, hindering scalability. Fortunately, with our approach, we never transport data. Rather, we show how the statistical models themselves can be transported, and prove that for the tangent-space models above, the transport “commutes” with learning. Consequently, our compact framework, applicable to a large class of manifolds, is not restricted by the size of either the training or test sets. We demonstrate the approach by transferring PCA and logistic-regression models of real-world data involving 3D shapes and image descriptors.

pdf SupMat Video poster DOI Project Page [BibTex]

pdf SupMat Video poster DOI Project Page [BibTex]


Thumb xl screen shot 2014 07 09 at 15.49.27
Robot Arm Pose Estimation through Pixel-Wise Part Classification

Bohg, J., Romero, J., Herzog, A., Schaal, S.

In IEEE International Conference on Robotics and Automation (ICRA) 2014, pages: 3143-3150, June 2014 (inproceedings)

Abstract
We propose to frame the problem of marker-less robot arm pose estimation as a pixel-wise part classification problem. As input, we use a depth image in which each pixel is classified to be either from a particular robot part or the background. The classifier is a random decision forest trained on a large number of synthetically generated and labeled depth images. From all the training samples ending up at a leaf node, a set of offsets is learned that votes for relative joint positions. Pooling these votes over all foreground pixels and subsequent clustering gives us an estimate of the true joint positions. Due to the intrinsic parallelism of pixel-wise classification, this approach can run in super real-time and is more efficient than previous ICP-like methods. We quantitatively evaluate the accuracy of this approach on synthetic data. We also demonstrate that the method produces accurate joint estimates on real data despite being purely trained on synthetic data.

video code pdf DOI Project Page [BibTex]

video code pdf DOI Project Page [BibTex]


Thumb xl dfm
Efficient Non-linear Markov Models for Human Motion

Lehrmann, A. M., Gehler, P. V., Nowozin, S.

In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), pages: 1314-1321, IEEE, June 2014 (inproceedings)

Abstract
Dynamic Bayesian networks such as Hidden Markov Models (HMMs) are successfully used as probabilistic models for human motion. The use of hidden variables makes them expressive models, but inference is only approximate and requires procedures such as particle filters or Markov chain Monte Carlo methods. In this work we propose to instead use simple Markov models that only model observed quantities. We retain a highly expressive dynamic model by using interactions that are nonlinear and non-parametric. A presentation of our approach in terms of latent variables shows logarithmic growth for the computation of exact loglikelihoods in the number of latent states. We validate our model on human motion capture data and demonstrate state-of-the-art performance on action recognition and motion completion tasks.

Project page pdf DOI Project Page [BibTex]

Project page pdf DOI Project Page [BibTex]