Department Talks

Learning to segment moving objects

  • 19 May 2017 • 14:00 15:00
  • Cordelia Schmid
  • Greenhouse (PS)

This talk addresses the task of segmenting moving objects in unconstrained videos. We introduce a novel two-stream neural network with an explicit memory module to achieve this. The two streams of the network encode spatial and temporal features in a video sequence respectively, while the memory module captures the evolution of objects over time. The module to build a “visual memory” in video, i.e., a joint representation of all the video frames, is realized with a convolutional recurrent unit learned from a small number of training video sequences. Given video frames as input, our approach first assigns each pixel an object or background label obtained with an encoder-decoder network that takes as input optical flow and is trained on synthetic data. Next, a “visual memory” specific to the video is acquired automatically without any manually-annotated frames. The visual memory is implemented with convolutional gated recurrent units, which allows to propagate spatial information over time. We evaluate our method extensively on two benchmarks, DAVIS and Freiburg-Berkeley motion segmentation datasets, and show state-of-the-art results. This is joint work with K. Alahari and P. Tokmakov.

Organizers: Osman Ulusoy

Biquadratic Forms and Semi-Definite Relaxations

  • 11 May 2017 • 10:30 11:00
  • Carolin Schmitt
  • PS Green House

I'll present my master thesis "Biquadratic Forms and Semi-Definite Relaxations". It is about biquadratic optimization programs (which are NP-hard generally) and examines a condition under which there exists an algorithm that finds a solution to every instance of the problem in polynomial time. I'll present a counterexample for which this is not possible generally and face the question of what happens if further knowledge about the variables over which we optimise is applied.

Organizers: Fatma Güney

Graph Decomposition Problems in Image Analysis

  • 08 May 2017 • 11:00 12:00
  • Björn Andres
  • N3.022

A large part of image analysis is about breaking things into pieces. Decompositions of a graph are a mathematical abstraction of the possible outcomes. This talk is about optimization problems whose feasible solutions define decompositions of a graph. One example is the correlation clustering problem whose feasible solutions relate one-to-one to the decompositions of a graph, and whose objective function puts a cost or reward on neighboring nodes ending up in distinct components. This talk shows applications of this problem and proposed generalizations to diverse image analysis tasks. It sketches algorithms for finding feasible solutions for large instances in practice, solutions that are often superior in the metrics of application-specific benchmarks. It also sketches algorithms for finding lower bounds and points to new findings and open problems of polyhedral geometry in this context.

Organizers: Christoph Lassner

Learning from Synthetic Humans

  • 04 May 2017 • 15:00 16:00
  • Gul Varol
  • N3.022 (Greenhouse)

Estimating human pose, shape, and motion from images and video are fundamental challenges with many applications. Recent advances in 2D human pose estimation use large amounts of manually-labeled training data for learning convolutional neural networks (CNNs). Such data is time consuming to acquire and difficult to extend. Moreover, manual labeling of 3D pose, depth and motion is impractical. In this work we present SURREAL: a new large-scale dataset with synthetically-generated but realistic images of people rendered from 3D sequences of human motion capture data. We generate more than 6 million frames together with ground truth pose, depth maps, and segmentation masks. We show that CNNs trained on our synthetic dataset allow for accurate human depth estimation and human part segmentation in real RGB images. Our results and the new dataset open up new possibilities for advancing person analysis using cheap and large-scale synthetic data.

Organizers: Dimitris Tzionas

Dancing with TURKs or Tai Chi with a Master?

  • 13 April 2017 • 11:00 12:00
  • Yanxi Liu
  • N3.022 (Greenhouse)

From gait, dance to martial art, human movements provide rich, complex yet coherent spatiotemporal patterns reflecting characteristics of a group or an individual. We develop computer algorithms to automatically learn such quality discriminative features from multimodal data. In this talk, I present a trilogy on learning from human movements: (1) Gait analysis from video data: based on frieze patterns (7 frieze groups), a video sequence of silhouettes is mapped into a pair of spatiotemporal patterns that are near-periodic along the time axis. A group theoretical analysis of periodic patterns allows us to determine the dynamic time warping and affine scaling that aligns two gait sequences from similar viewpoints for human identification. (2) Dance analysis and synthesis (mocap, music, ratings from Mechanical Turks): we explore the complex relationship between perceived dance quality/dancer's gender and dance movements respectively. As a feasibility study, we construct a computational framework for an analysis-synthesis-feedback loop using a novel multimedia dance-texture representation for joint angular displacement, velocity and acceleration. Furthermore, we integrate crowd sourcing, music and motion-capture data, and machine learning-based methods for dance segmentation, analysis and synthesis of new dancers. A quantitative validation of this framework on a motion-capture dataset of 172 dancers evaluated by more than 400 independent on-line raters demonstrates significant correlation between human perception and the algorithmically intended dance quality or gender of the synthesized dancers. (3) Tai Chi performance evaluation (mocap + video): I shall also discuss the feasibility of utilizing spatiotemporal synchronization and, ultimately, machine learning to evaluate Tai Chi routines performed by different subjects in our current project of “Tai Chi + Advanced Technology for Smart Health”.

Organizers: Laura Sevilla Siyu Tang

Building Multi-Family Animal Models

  • 07 April 2017 • 11:00 12:00
  • Silvia Zuffi
  • Aquarium, N.3.022, Spemannstr. 34, third floor

There has been significant prior work on learning realistic, articulated, 3D statistical shape models of the human body. In contrast, there are few such models for animals, despite their many applications in biology, neuroscience, agriculture, and entertainment. The main challenge is that animals are much less cooperative subjects than humans: the best human body models are learned from thousands of 3D scans of people in specific poses, which is infeasible with live animals. In the talk I will illustrate how we extend a state-of-the-art articulated 3D human body model (SMPL) to animals learning from toys a multi-family shape space that can represent lions, cats, dogs, horses, cows and hippos. The generalization of the model is illustrated by fitting it to images of real animals, where it captures realistic animal shapes, even for new species not seen in training.

Deep Learning and its Relationship with Time

  • 08 December 2016 • 11:00 12:00
  • Laura Leal-Taixé
  • MRZ Seminar Room

In this talk I am going to present the work we have been doing at the Computer Vision Lab of the Technical University of Munich which started as an attempt to better deal with videos (and therefore the time domain) within neural network architectures.

Organizers: Joel Janai

  • Kathleen Robinette
  • MRZ Seminar Room

Kathleen is the creator of the well-known CAESAR anthropomorphic dataset and is an expert on body shape and apparel fit.

Organizers: Javier Romero

  • Carsten Rother
  • MRZ seminar room

In this talk I will present the portfolio of work we conduct in our lab. Herby, I will present three recent body of work in more detail. This is firstly our work on learning 6D Object Pose estimation and Camera localizing from RGB or RGBD images. I will show that by utilizing the concepts of uncertainty and learning to score hypothesis, we can improve the state of the art. Secondly, I will present a new approach for inferring multiple diverse labeling in a graphical model. Besides guarantees of an exact solution, our method is also faster than existing techniques. Finally, I will present a recent work in which we show that popular Auto-context Decision Forests can be mapped to Deep ConvNets for Semantic Segmentation. We use this to detect the spine of a zebrafish, in case when little training data is available.

Organizers: Aseem Behl

  • Bogdan Savchynskyy
  • Mrz Seminar Room (room no. 0.A.03)

We propose a new computational framework for combinatorial problems arising in machine learning and computer vision. This framework is a special case of Lagrangean (dual) decomposition, but allows for efficient dual ascent (message passing) optimization. In a sense, one can understand both the framework and the optimization technique as a generalization of those for standard undirected graphical models (conditional random fields). We will make an overview of our recent results and plans for the nearest future.

Organizers: Aseem Behl