Header logo is ps
Department Talks

Learning Dynamics from Kinematics: Estimating Foot Pressure from Video

  • 12 December 2018 • 10:00 11:00
  • Yanxi Liu
  • Aquarium (N3.022)

Human pose stability analysis is the key to understanding locomotion and control of body equilibrium, with numerous applications in the fields of Kinesiology, Medicine and Robotics. We propose and validate a novel approach to learn dynamics from kinematics of a human body to aid stability analysis. More specifically, we propose an end-to-end deep learning architecture to regress foot pressure from a human pose derived from video. We have collected and utilized a set of long (5min +) choreographed Taiji (Tai Chi) sequences of multiple subjects with synchronized motion capture, foot pressure and video data. The derived human pose data and corresponding foot pressure maps are used jointly in training a convolutional neural network with residual architecture, named “PressNET”. Cross validation results show promising performance of PressNet, significantly outperforming the baseline method under reasonable sensor noise ranges.

Organizers: Nadine Rueegg

Self-Supervised Representation Learning for Visual Behavior Analysis and Synthesis

  • 14 December 2018 • 12:00 13:00
  • Prof. Dr. Björn Ommer
  • PS Aquarium

Understanding objects and their behavior from images and videos is a difficult inverse problem. It requires learning a metric in image space that reflects object relations in real world. This metric learning problem calls for large volumes of training data. While images and videos are easily available, labels are not, thus motivating self-supervised metric and representation learning. Furthermore, I will present a widely applicable strategy based on deep reinforcement learning to improve the surrogate tasks underlying self-supervision. Thereafter, the talk will cover the learning of disentangled representations that explicitly separate different object characteristics. Our approach is based on an analysis-by-synthesis paradigm and can generate novel object instances with flexible changes to individual characteristics such as their appearance and pose. It nicely addresses diverse applications in human and animal behavior analysis, a topic we have intensive collaboration on with neuroscientists. Time permitting, I will discuss the disentangling of representations from a wider perspective including novel strategies to image stylization and new strategies for regularization of the latent space of generator networks.

Organizers: Joel Janai

Generating Faces & Heads: Texture, Shape and Beyond.

  • 17 December 2018 • 11:00 12:00
  • Stefanos Zafeiriou
  • PS Aquarium

The past few years with the advent of Deep Convolutional Neural Networks (DCNNs), as well as the availability of visual data it was shown that it is possible to produce excellent results in very challenging tasks, such as visual object recognition, detection, tracking etc. Nevertheless, in certain tasks such as fine-grain object recognition (e.g., face recognition) it is very difficult to collect the amount of data that are needed. In this talk, I will show how, using DCNNs, we can generate highly realistic faces and heads and use them for training algorithms such as face and facial expression recognition. Next, I will reverse the problem and demonstrate how by having trained a very powerful face recognition network it can be used to perform very accurate 3D shape and texture reconstruction of faces from a single image. Finally, I will demonstrate how to create very lightweight networks for representing 3D face texture and shape structure by capitalising upon intrinsic mesh convolutions.

Organizers: Dimitris Tzionas

Deep learning on 3D face reconstruction, modelling and applications

  • 19 December 2018 • 11:00 12:00
  • Yao Feng
  • PS Aquarium

In this talk, I will present my understanding on 3D face reconstruction, modelling and applications from a deep learning perspective. In the first part of my talk, I will discuss the relationship between representations (point clouds, meshes, etc) and network layers (CNN, GCN, etc) on face reconstruction task, then present my ECCV work PRN which proposed a new representation to help achieve state-of-the-art performance on face reconstruction and dense alignment tasks. I will also introduce my open source project face3d that provides examples for generating different 3D face representations. In the second part of the talk, I will talk some publications in integrating 3D techniques into deep networks, then introduce my upcoming work which implements this. In the third part, I will present how related tasks could promote each other in deep learning, including face recognition for face reconstruction task and face reconstruction for face anti-spoofing task. Finally, with such understanding of these three parts, I will present my plans on 3D face modelling and applications.

Organizers: Timo Bolkart

Mind Games

IS Colloquium
  • 21 December 2018 • 11:00 12:00
  • Peter Dayan
  • IS Lecture Hall

Much existing work in reinforcement learning involves environments that are either intentionally neutral, lacking a role for cooperation and competition, or intentionally simple, when agents need imagine nothing more than that they are playing versions of themselves. Richer game theoretic notions become important as these constraints are relaxed. For humans, this encompasses issues that concern utility, such as envy and guilt, and that concern inference, such as recursive modeling of other players, I will discuss studies treating a paradigmatic game of trust as an interactive partially-observable Markov decision process, and will illustrate the solution concepts with evidence from interactions between various groups of subjects, including those diagnosed with borderline and anti-social personality disorders.

  • Silvia Zuffi
  • N3.022

Animals are widespread in nature and the analysis of their shape and motion is of importance in many fields and industries. Modeling 3D animal shape, however, is difficult because the 3D scanning methods used to capture human shape are not applicable to wild animals or natural settings. In our previous SMAL model, we learn animal shape from toys figurines, but toys are limited in number and realism, and not every animal is sufficiently popular for there to be realistic toys depicting it. What is available in large quantities are images and videos of animals from nature photographs, animal documentaries, and webcams. In this talk I will present our recent work for capturing the detailed 3D shape of animals from images alone. Our method extracts significantly more 3D shape detail than previous work and is able to model new species using only a few video frames. Additionally, we extract realistic texture map from images for capturing both animal shape and appearance.

  • Prof. Constantin Rothkopf
  • Tübingen, 3rd Floor Intelligent Systems: Aquarium

Active vision has long put forward the idea, that visual sensation and our actions are inseparable, especially when considering naturalistic extended behavior. Further support for this idea comes from theoretical work in optimal control, which demonstrates that sensing, planning, and acting in sequential tasks can only be separated under very restricted circumstances. The talk will present experimental evidence together with computational explanations of human visuomotor behavior in tasks ranging from classic psychophysical detection tasks to ball catching and visuomotor navigation. Along the way it will touch topics such as the heuristics hypothesis and learning of visual representations. The connecting theme will be that, from the switching of visuomotor behavior in response to changing task-constraints down to cortical visual representations in V1, action and perception are inseparably intertwined in an ambiguous and uncertain world

Organizers: Betty Mohler

Deriving a Tongue Model from MRI Data

  • 20 February 2018 • 14:00 14:45
  • Alexander Hewer
  • Aquarium

The tongue plays a vital part in everyday life where we use it extensively during speech production. Due to this importance, we want to derive a parametric shape model of the tongue. This model enables us to reconstruct the full tongue shape from a sparse set of points, like for example motion capture data. Moreover, we can use such a model in simulations of the vocal tract to perform articulatory speech synthesis or to create animated virtual avatars. In my talk, I describe a framework for deriving such a model from MRI scans of the vocal tract. In particular, this framework uses image denoising and segmentation methods to produce a point cloud approximating the vocal tract surface. In this context, I will also discuss how palatal contacts of the tongue can be handled, i.e., situations where the tongue touches the palate and thus no tongue boundary is visible. Afterwards, template matching is used to derive a mesh representation of the tongue from this cloud. The acquired meshes are finally used to construct a multilinear model.

Organizers: Timo Bolkart

Appearance Modeling for 4D Multi-view Representations

  • 15 December 2017 • 12:00 12:45
  • Vagia Tsiminaki
  • PS Seminar Room (N3.022)

The emergence of multi-view capture systems has yield a tremendous amount of video sequences. The task of capturing spatio-temporal models from real world imagery (4D modeling) should arguably benefit from this enormous visual information. In order to achieve highly realistic representations both geometry and appearance need to be modeled in high precision. Yet, even with the great progress of the geometric modeling, the appearance aspect has not been fully explored and visual quality can still be improved. I will explain how we can optimally exploit the redundant visual information of the captured video sequences and provide a temporally coherent, super-resolved, view-independent appearance representation. I will further discuss how to exploit the interdependency of both geometry and appearance as separate modalities to enhance visual perception and finally how to decompose appearance representations into intrinsic components (shading & albedo) and super-resolve them jointly to allow for more realistic renderings.

Organizers: Despoina Paschalidou

Reconstructing and Perceiving Humans in Motion

  • 30 November 2017 • 15:00
  • Dr. Gerard Pons-Moll

For man-machine interaction it is crucial to develop models of humans that look and move indistinguishably from real humans. Such virtual humans will be key for application areas such as computer vision, medicine and psychology, virtual and augmented reality and special effects in movies. Currently, digital models typically lack realistic soft tissue and clothing or require time-consuming manual editing of physical simulation parameters. Our hypothesis is that better and more realistic models of humans and clothing can be learned directly from real measurements coming from 4D scans, images and depth and inertial sensors. We combine statistical machine learning techniques and physics based simulation to create realistic models from data. We then use such models to extract information out of incomplete and noisy sensor data from monocular video, depth or IMUs. I will give an overview of a selection of projects conducted in Perceiving Systems in which we build realistic models of human pose, shape, soft-tissue and clothing. I will also present some of our recent work on 3D reconstruction of people models from monocular video, real-time fusion and online human body shape estimation from depth data and recovery of human pose in the wild from video and IMUs. I will conclude the talk outlining the next challenges in building digital humans and perceiving them from sensory data.

Organizers: Melanie Feldhofer

  • Christoph Mayer
  • S2 Seminar Room (S 2.014)

Variational image processing translates image processing tasks into optimisation problems. The practical success of this approach depends on the type of optimisation problem and on the properties of the ensuing algorithm. A recent breakthrough was to realise that old first-order optimisation algorithms based on operator splitting are particularly suited for modern data analysis problems. Operator splitting techniques decouple complex optimisation problems into many smaller and simpler sub-problems. In this talk I will revise the variational segmentation problem and a common family of algorithms to solve such optimisation problems. I will show that operator splitting leads to a divide-and-conquer strategy that allows to derive simple and massively parallel updates suitable for GPU implementations. The technique decouples the likelihood from the prior term and allows to use a data-driven model estimating the likelihood from data, using for example deep learning. Using a different decoupling strategy together with general consensus optimisation leads to fully distributed algorithms especially suitable for large-scale segmentation problems. Motivating applications are 3d yeast-cell reconstruction and segmentation of histology data.

Organizers: Benjamin Coors

3D lidar mapping: an accurate and performant approach

  • 20 October 2017 • 11:30 12:30
  • Michiel Vlaminck
  • PS Seminar Room (N3.022)

In my talk I will present my work regarding 3D mapping using lidar scanners. I will give an overview of the SLAM problem and its main challenges: robustness, accuracy and processing speed. Regarding robustness and accuracy, we investigate a better point cloud representation based on resampling and surface reconstruction. Moreover, we demonstrate how it can be incorporated in an ICP-based scan matching technique. Finally, we elaborate on globally consistent mapping using loop closures. Regarding processing speed, we propose the integration of our scan matching in a multi-resolution scheme and a GPU-accelerated implementation using our programming language Quasar.

Organizers: Simon Donne

  • Slobodan Ilic and Mira Slavcheva
  • PS Seminar Room (N3.022)

In this talk we will address the problem of 3D reconstruction of rigid and deformable objects from a single depth video stream. Traditional 3D registration techniques, such as ICP and its variants, are wide-spread and effective, but sensitive to initialization and noise due to the underlying correspondence estimation procedure. Therefore, we have developed SDF-2-SDF, a dense, correspondence-free method which aligns a pair of implicit representations of scene geometry, e.g. signed distance fields, by minimizing their direct voxel-wise difference. In its rigid variant, we apply it for static object reconstruction via real-time frame-to-frame camera tracking and posterior multiview pose optimization, achieving higher accuracy and a wider convergence basin than ICP variants. Its extension to scene reconstruction, SDF-TAR, carries out the implicit-to-implicit registration over several limited-extent volumes anchored in the scene and runs simultaneous GPU tracking and CPU refinement, with a lower memory footprint than other SLAM systems. Finally, to handle non-rigidly moving objects, we incorporate the SDF-2-SDF energy in a variational framework, regularized by a damped approximately Killing vector field. The resulting system, KillingFusion, is able to reconstruct objects undergoing topological changes and fast inter-frame motion in near-real time.

Organizers: Fatma Güney

  • Anton Van Den Hengel
  • Aquarium

Visual Question Answering is one of the applications of Deep Learning that is pushing towards real Artificial Intelligence. It turns the typical deep learning process around by only defining the task to be carried out after the training has taken place, which changes the task fundamentally. We have developed a range of strategies for incorporating other information sources into deep learning-based methods, and the process taken a step towards developing algorithms which learn how to use other algorithms to solve a problem, rather than solving it directly. This talk thus covers some of the high-level questions about the types of challenges Deep Learning can be applied to, and how we might separate the things its good at from those that it’s not.

Organizers: Siyu Tang

  • Yeara Kozlov
  • Aquarium

Creating convincing human facial animation is challenging. Face animation is often hand-crafted by artists separately from body motion. Alternatively, if the face animation is derived from motion capture, it is typically performed while the actor is relatively still. Recombining the isolated face animation with body motion is non-trivial and often results in uncanny results if the body dynamics are not properly reflected on the face (e.g. cheeks wiggling when running). In this talk, I will discuss the challenges of human soft tissue simulation and control. I will then present our method for adding physical effects to facial blendshape animation. Unlike previous methods that try to add physics to face rigs, our method can combine facial animation and rigid body motion consistently while preserving the original animation as closely as possible. Our novel simulation framework uses the original animation as per-frame rest-poses without adding spurious forces. We also propose the concept of blendmaterials to give artists an intuitive means to control the changing material properties due to muscle activation.

Organizers: Timo Bolkart