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Abstract

While the majority of today’s object class models provide only 2D bounding
boxes, far richer output hypotheses are desirable including viewpoint, fine-grained
category, and 3D geometry estimate. However, models trained to provide richer
output require larger amounts of training data, preferably well covering the rel-
evant aspects such as viewpoint and fine-grained categories. In this paper, we
address this issue from the perspective of transfer learning, and design an object
class model that explicitly leverages correlations between visual features. Specif-
ically, our model represents prior distributions over permissible multi-view de-
tectors in a parametric way – the priors are learned once from training data of a
source object class, and can later be used to facilitate the learning of a detector
for a target class. As we show in our experiments, this transfer is not only bene-
ficial for detectors based on basic-level category representations, but also enables
the robust learning of detectors that represent classes at finer levels of granularity,
where training data is typically even scarcer and more unbalanced. As a result, we
report largely improved performance in simultaneous 2D object localization and
viewpoint estimation on a recent dataset of challenging street scenes.

1 Introduction

Motivated by higher-level tasks such as scene understanding and object tracking it has been argued
that object class models should not only provide flat, 2D bounding box detections but rather provide
more expressive output, such as a viewpoint estimate [39, 43, 25, 40, 32, 45, 18] or an estimate
of the 3D geometry of the object of interest [34, 47, 33, 14, 29, 49]. Similarly, there has been in
increased interest in object representations that allow more fine-grained distinctions than basic-level
categories [24, 21, 42], for two reasons. First, these representations potentially perform better in
recognition, as they explicitly address the modes of intra-class variation. And second, they, again,
can provide further inputs to higher-level reasoning (e.g., in the form of fine-grained category labels).

However, today’s methods for 3D and fine-grained object representations suffer from a major weak-
ness: for robust parameter estimation, they tend to require an abundance of annotated training data
that covers all relevant aspects (viewpoints, sub-categories) with sufficient density. Unfortunately,
this abundance of training data cannot be expected in general. Even in the case of dedicated multi-
view datasets [39, 31, 1, 42] or when resorting to artificially rendered CAD data [25, 40, 50], the
distribution of the number of available training images over object categories is known to be highly
unbalanced and heavy-tailed [46, 38, 27]. This is particularly pronounced for categories at finer
levels of granularity, such as individual types or brands of cars1.

Transfer learning has been acknowledged as a promising way to leverage scarce training data, by
reusing once acquired knowledge as a regularizer in novel learning tasks [11, 41, 16]. While it has

1Fig. 5 and 6 in Sect. 6 show the viewpoint data statistics for car-types and car-models on KITTI [17].
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been shown that transfer learning can be beneficial for performance, its use in computer vision has,
so far, mostly been limited to either classification tasks [11, 51, 37, 5] or flat, 2D bounding box
detection [2, 16], neglecting both the 3D nature of the recognition problem and more fine-grained
object class representations.

The starting point and major contribution of this paper is therefore to design a transfer learning
technique that is particularly tailored towards multi-view recognition (encompassing simultaneous
bounding box localization and viewpoint estimation). It boosts detector performance for scarce and
unbalanced training data, lending itself to fine-grained object representations.

To that end, we represent transferable knowledge as prior distributions over permissible mod-
els [11, 16], in two different flavors. The first flavor (Sect. 3.1) captures sparse correlations be-
tween HOG cells in a multi-view deformable part model (DPM [12]), across viewpoints. While
this is similar in spirit to [16] in terms of statistical modeling, we explicitly leverage 3D object ge-
ometry [34, 33] in order to establish meaningful correspondences between HOG cells, in a fully
automatic way. As we show in our experiments (Sect. 4), this already leads to some improvements
in performance in comparison to [16]. The second flavor (Sect. 3.2) extends the sparse correlations
to a full, dense covariance matrix that potentially relates each HOG cell to every other HOG cell,
again across viewpoints – this can be seen as directly learning transformations between different
views, where the particular choice of source and target cells can function as a regularizer on the
learned transformation, and leads to substantial improvements in simultaneous bounding box local-
ization and viewpoint estimation. Both flavors are simple to implement (covariance computation
for prior learning and feature transformation for prior application) and hence widely applicable, yet
lead to substantial performance improvements for realistic training data with unbalanced viewpoint
distributions.

Our paper makes the following specific contributions: First, to our knowledge, our work is the
first attempt to explicitly design a transfer learning technique for multi-view recognition and fine-
grained object representations. Second, we propose two flavors of learning prior distributions over
permissible multi-view detectors, one based on sparse correlations between cells and one based
on the full covariance. Both are conveniently expressed as instantiations of a class of structured
priors that are easy to implement and can be readily applied to current state-of-the-art multi-view
detectors [12, 34, 33]. And third, we provide an in-depth experimental study of our models, first
investigating multi-view transfer learning under the controlled conditions of a standard multi-view
benchmark [39] (Sect. 4.1), and finally demonstrating improved performance for simultaneous ob-
ject localization and viewpoint estimation on realistic street scenes [17] (Sect. 4.2).

2 Related work

The problem of scarce training data has mainly been addressed in two different ways in the literature.

Generating training data. The first way is to explicitly generate more training data for the
task at hand, e.g., by rendering CAD models of the object class of interest. Rendered data has
successfully been applied in the context of multi-view recognition [26, 25, 40, 50, 34, 33], people
detection [36, 35], and indoor scene understanding [7]. The success of these approaches is due to
the fact that unlimited amounts of training data can be generated with lots of variation in viewpoint,
shape and articulation, from just a few models. Existing approaches differ mostly in the acquisition
of appropriate models (3D scanning [36, 35] vs. manual design [26, 25, 40, 50, 34, 33]) and the
rendering output, ranging from close to photo-realistic images [35, 26] to directly rendering edge-
based features [40, 36, 34, 33]. A special case of data “generation” is the borrowing of training
examples from other object classes [27], adapting feature representations to exploit data from dif-
ferent domains [22] or using decorrelated features [20]. While our model based on local correlation
structures (Sect. 3.1) can leverage CAD models of the object class, this is done for the sole purpose
of deriving correspondences based on 3D geometry, and does not include object appearance.

Transfer learning. The second way is to first condense available training data into a model, and
then reusing that model in the context of another learning task. While there is a vast amount of
literature on this kind of transfer learning, most approaches focus on object or image classification
rather than detection [30, 15, 4, 3, 44, 51, 23, 37, 5]. In terms of detection, approaches range from
shape-based object class representations relying on manually-annotated parts in a single view [41]
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over HOG- ([6]) templates with fixed layout [2] to full-fledged deformable part models [16] that
share low-level feature statistics. Common to all these approaches is that they are agnostic about
the inherent 3D nature of the object class detection problem; in contrast, our models explicitly
leverage 3D (Sect. 3.1) or viewpoint (Sect. 3.2) information. This is a key difference in particular
to [16], which focuses entirely on low-level features that can be universally transferred. Since part
of our evaluation is performed on object categories of a fine granularity (individual car-models), we
acknowledge that this is of course connected to work in fine-grained categorization [48, 10, 42]. In
contrast to these works, however, the focus of ours is on learning multi-view detectors from scarce
training data, rather than classifying cropped images according to a fine-grained class taxonomy.

3 Multi-view transfer learning

We consider the scenario of transfer learning for object models. The goal is to train an object
detection model for a target class for which only very few labeled examples are available. However
we have access to an existing (or several) object model for a similar (or the same) object class, the
source models. The main intuition that guides our approach is that if we extract common regularities
shared by both object classes, then this in turn can be used to devise better target models. In the case
of object detection on HOG [6] we reason that although the actual feature distribution may differ,
there are similarities in how the features deform under transformations such as viewpoint changes.

Preliminaries. More formally, let us denote by ws the parameters of a source model. Specifically
in the case of multi component detectors we have ws = [ws

1, . . . , w
s
C ], where the individual ws

i
denote different components of the models. As we are interested in the multi-view setting, the
components represent specific viewpoints in our case. Given ws and a few Nt labeled examples
of a target class {xi, yi; i ∈ {1, . . . , Nt}}, the goal is to derive a detection model wt. This is
implemented via the regularized risk functional, which has been used for multi-task learning in [9]

wt = argmin
w

J(w) +

Nt∑
i=1

l(w, xi, yi), (1)

consisting of a regularization J(w) and a data fit term, here the empirical loss l on the training
data points. The data term is standard and we may use loss functions such as structured losses or
simpler losses like the Hinge loss for classification. In addition to the data term we regularize the
model parameters with J , that is derived using information from the source model. We use a transfer
learning objective based on [9] where the same regularizer is proposed in the context of multi-task
learning. The regularizer is quadratic and of the form

J(w) = w>Ksw.
We distinguish between different choices of Ks, implementing different possibilities to transfer
knowledge from the source model. When Ks = I, the objective (1) reduces to the standard SVM
case. In the following, we will explore three different variants for the knowledge transfer matrixKs.

3.1 Learning sparse correlation structures

Let us denote with w an appearance filter of one viewpoint component in the entire set of parameters
w. For simplicity we will simply refer to this as w without using sub- or superscripts. This filter is
of size n×m×L. It has spatial extent of n×m cells, and L are filter values computed in each cell
(L = 32 in [12]). We denote each cell j as a vector wj ∈ RL. We implement different versions of
the transfer learning objective (1) using a graph Laplacian regularization approach ([9], Sect 3.1.3)
by choosing

J(w) = w>Ksw = w>(I − λΣs)w,
where Σs encodes correlations between different cells in the model. The matrix Σs is of size P ×P ,
with P being the total number of model parameters. To distinguish between different choices for
the structure of Σs we denote with ∼n a relationship of type n between two cells in w. With “type”,
for example we can refer to a spatial relation among cells, such as horizontal neighbors, vertical
neighbors, etc. This defines a set of cell pairs Pn = {(wj , wk)|j ∼n k} in the model that satisfy
relation ∼n. From the set Pn one can compute cross covariances for different types

Σn =
∑
j∼nk

(wj − w̄)(wk − w̄)>, (2)
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where w̄ = 1
|Pn|

∑
j wj is the mean of the set of cells. The full P ×P matrix Σs is then constructed

from the smaller L×L block matrices Σn (details below). This results in a sparse Σs, as the number
of cell pairs satisfying a relation is small compared to the total number of possible cell pairs.

Single view correlation structures (SVM-SV). Originally proposed in [16], SVM-SV aims at
capturing generic neighborhood relationships between HOG cells within a single template (i.e., a
single view). This implements a specific choice for ∼n. SVM-SV focuses on 5 specific relation
types: horizontal (∼h), vertical (∼v), upper-left diagonal (∼d1) and upper-right diagonal (∼d2) cell
relations. In addition, SVM-SV captures self-correlations of the same cell∼cell. For a given relation
type ∼n, SVM-SV takes into account all cell pairs in the template which satisfy the relation ∼n, to
compute each of the different cross-covariances Σh, Σv , Σd1, Σd2 and Σcell.

Multi-view correlation structures (SVM-MV). We extend SVM-SV to encompass multi-view
knowledge transfer. In our model different components w of w correspond to different viewpoints
of the object class. Different components are very related since they have a common cause in the
geometric structure of the three dimensional object. Therefore, the goal of SVM-MV is to capture
the across-view cell relations in addition to the single view cell relation introduced by SVM-SV.
For that purpose, we learn a new, across-view relation type ∼mv , capturing cell relationships across
different views.

In order to establish cell relationships across viewpoints, we use a 3D CAD model of the object class
of interest (or a generic 3D ellipsoid with proper aspect ratio in case we do not have a CAD model
available for a class), which provides a unique 3D reference frame across views. The alignment
between learned and 3D CAD models is achieved by back-projecting 2D cell positions onto the 3D
surface, assuming known viewpoints for the learned models and fixed perspective projection. We
then establish cell relationships between cells that back-project onto the same 3D surface patch in
neighboring views, and learn Σmv .

After computing the different cross-covariances Σn for both SVM-SV and SVM-MV from the
source models, we construct the Σs matrix, which is further on used as a regularizer in the target
model training (Eq. 1). Σs uses the learned cell-cell correlations of different types from the source
models, to guide the training of the target model. In order to construct Σs, we first establish pairs
of cells (wi, wj) in the target model which satisfy a certain relation type ∼n (e.g. neighbors across
views) and then we populate the corresponding entries in Σs, Σi,j

s with Σn. We apply this procedure
for all cell relation types defined in SVM-SV and SVM-MV.

3.2 Learning dense multi-view correlation structures (SVM-Σ)

SVM-MV and SVM-SV capture correlation structures among model cells that satisfy certain cell
relations (2D neighboring cells, 3D object surface) resulting in a sparse graph encoded by Σs. In the
following, we extend this limited structure to a dense graph, that potentially captures relationships
among all cells in the model. We will refer to this model as SVM-Σ.

Let’s assume we are given a set of N source models {ws
1, . . . ,ws

N}, for example by training several
models using bootstrapping. Then, we compute the un-normalized covariance matrix Σemp

Σemp =
1

N

N∑
i=1

ws
iws

i
> (3)

which is a rank N matrix. We set Σs = Σemp.

This variant of Σs (SVM-Σ) is dense and captures correlations of all types among all cells across
all viewpoints in the model. Unlike SVM-MV and SVM-SV, which are rather generic in nature
(e.g., all pairs of horizontal pairs in the template are considered when learning Σh), SVM-Σ can
capture very specific and local cell correlations, within a single template (view) and across views.
Fig. 1 (left) visualizes a heatmap of the strength of the learned correlations for SVM-Σ between
given reference cells (red squares, black cubes) and all other cells, back-projected onto the 3D
surface of a car CAD model. Note that the heatmaps indeed reflect meaningful relationships (e.g.,
the front wheel surface patch shows high correlation with back wheel patches).

While SVM-Σ is a symmetric prior (as the correlations are computed across all views in the model),
we also consider the case where the target training data distribution is sparse over viewpoints. We
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Figure 1: (Left) Learned priors visualized in 3D (for a reference cell). Red indicates the reference
cell. The black cube indicates the reference cell back-projected into 3D. (Right) SVM-Σ versions.

address this by sparser, asymmetric variants of SVM-Σ that connect only certain views with each
other, by zeroing out parts of the Σs using an element-wise multiplication with a sparse matrix
S as S ◦ Σs. Several choices of S are depicted in Figure 1 (right). We distinguish between the
following asymmetric priors: SVM-Σ-TD2ND, where we transfer knowledge from views for which
we have target data to views with no target training data, SVM-Σ-TD2ALL with transfer from views
with target data to all views, and SVM-Σ-NB2ALL where we transfer from every viewpoint to its
neighboring viewpoints.

3.3 Learning a target model using the learned Ks matrix

We perform model learning (Eq. 1) by first doing a Cholesky decomposition of Ks = U>U . This
allows us to define feature and model transformations: x̃ = U−>x and w̃ = Uw. Using these
transformations, one can show that w>Ksw = w̃>w̃ and w̃>x̃ = w>x, which means we can learn
a target model by first, transforming the features and the models using U , then training a model
via a standard SVM solver in the transformed space, and in the end transforming back the trained
model. In the SVM-SV case, to be compatible with [16], we perform eigen decomposition instead
of Cholesky.

4 Experiments

In this section, we carefully evaluate the performance of our multi-view priors. First (Sect. 4.1), we
provide an in-depth analysis of different variants of the SVM-MV and SVM-Σ priors in a controlled
training data setting, by varying the viewpoint distribution of the training set. We learn target models
using a few target training examples plus our priors and compare them to using the SVM-SV prior
proposed in [16] and using standard SVM. We perform the analysis on two tasks, 2D bounding
box localization and viewpoint estimation on the 3D Object Classes dataset [39], demonstrating
successful knowledge transfer even for cases in which there is no training data for 3/4 of the viewing
circle. Second (Sect. 4.2), we highlight the potential of our SVM-Σ priors to greatly improve the
performance of simultaneous 2D bounding box localization and viewpoint estimation in a realistic,
uncontrolled data set of challenging street scenes (the tracking benchmark of KITTI [17]).

For computational reasons, we restrict ourselves to the root-template-only version of the DPM [13]
as the basis for all our models in Sect. 4.1, but consider the full, part-based version for the more
challenging and realistic experiments in Sect. 4.2. In all cases, the C parameter is fixed to 0.002 [12]
for all tested methods. We set λ = 0.9/emax, where emax is the biggest eigenvalue of Σs. We
empirically verified that this always resulted in a positive definite matrix Ks, which makes Eq. 1 a
convex optimization problem.

4.1 Comparison of multi-view priors

We start by comparing the different multi-view priors on the 3D Object Classes dataset [39] (a
widely accepted multiview-benchmark with balanced training and test data from 8 viewpoint bins,
for 9 object classes), in two sets of experiments. In the first set, we use the same number k of
target training examples per view (multi-view k-shot learning). In the second set, we exclude certain
viewpoints completely from the training data (k = 0), keeping only a single example from each of
the other viewpoints (sparse multi-view k-shot learning). In both cases, the test set requires detecting
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Figure 2: 2D BB localization (left) and viewpoint estimation (right) on 3D Object Classes [39].

SVM-SV SVM-MV SVM-Σ SVM [28] [19] DPM-hinge+VP
[34]

DPM-VOC+VP
[34] [25] [50] [32] [18]

car 99.6 / 92.9 99.8 / 95.0 99.8 / 92.5 99.8 / 95.0 96.0 / 89.0 -/- 99.6 / 92.5 99.8 / 97.5 76.7/70.0 90.4/84.0 -/86.1 99.2/85.3
bicycle 88.8 / 87.6 89.9 / 87.6 96.7 / 92.2 90.1 / 87.9 91.0 / 88.0 -/- 98.6 / 93.0 98.8 / 97.5 69.8 / 75.5 -/- -/80.8 -/-

iron 94.9 / 94.7 96.4 / 96.1 90.6 / 88.8 97.0 / 95.5 53.0 / - -/- 93.3 / 86.3 96.0 / 89.7 -/- -/- -/- -/-
cell. 51.0 / 82.2 51.2 / 82.3 53.7 / 80.9 51.1 / 81.5 43.0 / - -/- 62.9 / 65.4 62.4 / 83.0 -/- -/- -/- -/-

mouse 61.3 / 74.7 61.2 / 70.8 61.4 / 69.8 62.5 / 72.5 41.0 / - -/- 73.1 / 62.2 72.7 / 76.3 -/- -/- -/- -/-
shoe 93.9 / 81.4 93.4 / 87.3 94.7 / 86.2 94.8 / 86.5 78.0 / - -/- 97.9 / 71.0 96.9 / 89.8 -/- -/- -/- -/-

stapler 71.5 / 69.2 72.6 / 70.2 74.2 / 70.2 74.2 / 70.2 32.0 / - -/- 84.4 / 62.8 83.7 / 81.2 -/- -/- -/- -/-
toaster 94.4 / 70.6 95.3 / 72.8 97.2 / 66.7 95.2 / 75.6 54.0 / - -/- 96.0 / 50.0 97.8 / 79.7 -/- -/- -/- -/-
mAP 81.9 / 81.7 82.5 / 82.8 83.5 / 80.9 83.1 / 83.1 61.0 / 79.2 - / 74.2 88.2 / 72.9 88.5 / 86.8 -/- -/- -/- -/-

Table 1: Comparison to state-of-the-art on 3D Object Classes [39].

objects seen from the entire viewing circle. For each class, our priors are trained using bootstrapping,
from 5 source models (each trained from 15 randomly sampled examples per view). The final target
model for a class is obtained by using k training examples from that class plus the respective prior.

Multi-view k-shot learning. Fig. 2 plots 2D BB localization (left) and viewpoint estima-
tion (right) performance for SVM, SVM-SV, SVM-MV, and SVM-Σ, varying the number k ∈
{1, 5, 10, all} of target training examples per view, averaged over 5 randomized runs. We make
the following observations. First, we see that SVM-Σ outperforms all other methods by significant
margins for restricted training data (k ∈ {1, 5, 10}), for both 2D BB localization (by at least 20.1%,
8.0% and 3.8%, respectively) and viewpoint estimation (by 15.6%, 9.2% and 4.3% ). Second, the
benefit of SVM-Σ increases with decreasing number of training examples, saturating for k = all.
And third, SVM-SV [16] and SVM-MV apparently fail to convey viewpoint-related information
beyond what can be learned from the k target examples alone, performing on par with SVM.

As a sanity check, Tab. 1 relates the complete per-class results for all methods and k = all (rightmost
curve points in Fig. 2) to the state-of-the-art. Despite not using parts, our models in fact outperform
previously reported results [19, 25, 50, 28, 32, 18] with and without priors, except for [34] based on
DPM [12] with parts. As parts obviously improve performance, we add them in Sect. 4.2.

Sparse multi-view k-shot learning. We move on to a more challenging setting in which (single)
training examples are only available for selected views, but not for others. Successful localization
and viewpoint estimation thus depends on prior information that can be “filled in” for the missing
viewpoints. Fig. 3 plots precision-recall curves for the car class and six different settings of increas-
ing difficulty, not having training data for just one view (front) (a), not for two views (front and left)
(b), not for four views (diagonal) (c), off-diagonal (d), not for six views (diagonal, back and right)
(e), and not for all views except front-left (f). Average precision and viewpoint estimation results are
given in plot legends. We compare the performance of SVM, SVM-MV, SVM-Σ, and three further
variations of SVM-Σ that restrict the structure of the prior covariance matrix (Sect. 3.2), namely,
SVM-Σ-TD2ALL, SVM-Σ-TD2ND, and SVM-Σ-NB2ALL.

In Fig. 3 (a) to (f), we observe that two methods succeed in transferring information to up to 6
unseen viewpoints (SVM-Σ, dark blue, and SVM-Σ-TD2ALL, green), with APs ranging from an
impressive 99.7 to 88.1% and VPs ranging from 92.1 to 49.8% for SVM-Σ). This observation is
confirmed by the confusion matrices in Fig. 3 (g): both SVM-Σ and SVM-Σ-TD2ALL exhibit a
much stronger diagonal structure than SVM. Understandably, performance deteriorates for just one
observable viewpoint (Fig. 3 (f); AP drops to 30.7%, VP to 15.3%). SVM-MV (light blue) provides
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Figure 3: 3D Object Classes [39]. Unbalanced multi-view 0-shot experiments (on cars) with no training data
for (a) Front, (b) Front and Left, (c) Off-diagonal views, (d) Diagonal views, (e) 1 training example for Left
and Front views, (f) 1 example for Front-left view. (g) VP confusion matrices for the 0-shot Diagonal case.
Bars on top indicate (with black) which viewpoints are used in training for each experiment.

an advantage over SVM (cyan) only for extremely little data (Fig. 3 (e), (f)), where it improves AP
by 0.9% and 2.7%.

Summary. We conclude that different kinds of priors (SVM-SV, SVM-MV, and variations of
SVM-Σ) vary drastically in their ability to convey viewpoint-related information. Notably, we ob-
serve only minor differences between SVM-SV, SVM-MV, and SVM, but large gains in both 2D
bounding box localization and viewpoint estimation for SVM-Σ.

4.2 Leveraging multi-view priors for object detection

Having verified the ability of our SVM-Σ priors to transfer viewpoint information for scarce and
unbalanced training data in Sect. 4.1, we now move on to an actual, realistic setting, which naturally
exhibits the dataset statistics that we simulated earlier (see Fig. 4, 5 and 6). Specifically, we focus
on the car object class on the KITTI street scene dataset [17] (and the tracking benchmark subset),
consisting of 21 sequences (8,008 images, corresponding to 579 car tracks and 27, 300 annotated
car bounding boxes) taken from a driving vehicle. We use 5 sequences for training and the rest for
testing. Due to the car-mounted camera setup, the distribution of viewpoints for car objects is already
heavily skewed towards back and diagonal views (cars driving in front of the camera car or being
parked on the side of the road, see Fig. 4). This becomes even more severe when considering more
fine-grained categories, such as individual car-types (we distinguish and annotate 7: stat. wagon,
convertible, coupe, hatchback, minibus, sedan, suv) and car-models (23 in total) 2.

Evaluation criteria. Average precision (AP) computed using the Pascal VOC [8] overlap crite-
rion, based solely on bounding boxes (BB) has been widely used as an evaluation measure. Since
the ultimate goal of our approach is to enable simultaneous object localization and viewpoint esti-
mation (both are equally important in an autonomous driving scenario), and in line with [17], we
report performance for two combined measures (jointly addressing both tasks) in addition to AP and
VP. Specifically, AP+VP-D allows a detection ŷ to be a true positive detection if and only if the
viewpoint estimate ŷv is the same as the ground truth yv . The second measure, AP+VP-C assigns
a weight ŵ = (180◦ − |∠(ŷv, yv)|)/180◦ to the true positive detection based on how well it aligns
with the ground truth viewpoint. Also in line with [17], we report results for non-occluded objects.

2The annotations will be made publicly available upon publication.
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prior AP / VP
method dataset base car-type car-model

SVM (KITTI+ 3D obj.) 87.1 / 69.3 - / - - / -
SVM (KITTI) 86.6 / 68.7 88.7 / 70.9 83.3 / 62.0

SVM-Σ 3D objects 90.7 / 71.9 91.6 / 75.1 87.5 / 73.9
SVM-Σ KITTI 90.7 / 71.9 90.1 / 75.1 89.4 / 75.6

SVM-MV 3D objects 90.2 / 72.6 90.3 / 71.9 82.9 / 63.2
SVM-MV KITTI 89.2 / 73.1 88.5 / 71.1 76.5 / 66.5
SVM-SV 3D objects 90.7 / 71.9 86.5 / 70.4 76.6 / 65.8
SVM-SV KITTI 86.9 / 71.4 85.8 / 70.8 76.5 / 66.5

AP+VP-D / AP+VP-C
base car-type car-model

53.6 / 67.0 - / - - / -
53.3 / 65.8 58.1 / 67.9 40.3 / 55.1
61.5 / 70.1 65.2 / 74.1 60.9 / 70.7
61.6 / 70.2 66.1 / 73.5 65.2 / 73.4
60.9 / 69.9 60.8 / 70.0 41.5 / 55.8
62.1 / 69.8 58.8 / 67.6 44.8 / 53.5
61.5 / 70.1 55.9 / 65.8 44.3 / 53.1
59.6 / 67.0 56.5 / 65.1 44.8 / 53.5

Table 2: Multi-view detection results on KITTI [17].

Basic-level category transfer. We commence by applying our priors to a standard object class
detector setup, in which a detector is trained such that positive examples are annotated on the level of
basic-level categories (i.e., car), denoted base in the following. Tab. 2 (left) gives the corresponding
2D bounding box localization and viewpoint estimation results, comparing our priors SVM-MV and
SVM-Σ to SVM-SV and a baseline not using any prior (SVM). For each, we consider two variants
depending from which data the prior (or the detector itself for SVM) has been trained (KITTI, 3D
Object Classes, or both). Note that the respective prior and SVM variants use the exact same training
data (but in different ways) and are hence directly comparable in terms of performance.

In Tab. 2 (left, col. base), we observe that our priors SVM-MV and SVM-Σ consistently outperform
SVM, for both 2D BB localization and viewpoint estimation, for both choices of training data (e.g.,
SVM-Σ-KITTI with 90.7% AP and 71.9% VP vs. SVM-KITTI with 86.6% AP and 68.7% VP).
The performance difference is even more pronounced when considering the combined performance
measures (Tab. 2 (right, col. base)). SVM-Σ-KITTI achieves 61.6% AP+VP-D and 70.2% AP+VP-
C, outperforming SVM-KITTI (53.3%, 65.8%) by a significant margin.

Similarly, SVM-Σ-3D Object Classes outperforms SVM-KITTI+3D Object Classes in all measures
(90.7% vs. 87.1% AP, 71.9% vs. 69.3% VP, 61.5% vs. 53.6% AP+VP-D and 70.1 vs. 67.0%
AP+VP-C). SVM-MV and SVM-SV priors also show promising detection performance, outper-
forming the SVM models in all metrics.

Fine-grained category transfer. Recently, is has been shown that fine-grained object class rep-
resentations on the level of sub-categories can improve performance [24, 21, 42], since they better
capture the different modes of intra-class variation than representations that equalize training exam-
ples on the level of basic-level categories. Further, these representations lend themselves to generate
additional output in the form of fine-grained category labels that can be useful for higher-level tasks,
such as scene understanding. In the following, we hence consider two fine-grained object class rep-
resentations that decompose cars into distinct car-types or even individual car-models. Both are
implemented as a bank of multi-view detectors (one per fine-grained category) that are trained inde-
pendently, but combined at test time by a joint non-maxima suppression to yield basic-level category
detections.

Note that the individual fine-grained detectors suffer even more severely from scarce and unbalanced
training data (see Fig. 5 and 6 in Sect. 6) than on the basic-level (see Fig. 4) – this is where our
priors come into play: we train the priors, as before, on the base level, and use them to facilitate
the learning of each individual fine-grained detector, effectively transferring knowledge from base
to fine-grained categories.

Tab. 2 gives the corresponding results in columns car-type and car-model, respectively. We observe:
first, performance can in fact improve as a result of the more fine-grained representation, for both
SVM-MV, SVM-Σ and even SVM (SVM-KITTI-car-type improves AP from 86.6% to 88.7%,
and VP from 68.7% to 70.9%, and AP+VP-D from 53.3% to 58.1% and AP+VP-C from 65.8%
to 67.9% compared to SVM-KITTI-base). A similar boost in performance in viewpoint estimation
and combined can be seen for SVM-Σ (SVM-Σ-KITTI-car-type improves VP from 71.9% to 75.1%,
and AP+VP-D from 61.6% to 66.1% and AP+VP-C from 70.2% to 73.5% compared to SVM-Σ-
KITTI-base; the AP stays consistently high with 90.7% vs. 90.1%). Second, the level of granularity
can be too fine: for almost all methods, the performance of the fine-grained car-model drops below
the performance of the corresponding base detector – there is just so little training data for each of
the car models that reliable fine-grained detectors can hardly be learned. Curiously, SVM-Σ-KITTI-
car-model can still keep up in terms of localization (89.4% AP) and even obtains the overall best
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@50 iou @70 iou
AP / VP AP+VP-D / AP+VP-C AP / VP AP+VP-D / AP+VP-C

prior dataset base car-type base car-type base car-type base car-type
SVM (KITTI) 90.9 / 74.3 93.2 / 75.9 65.2 / 72.1 66.8 / 74.9 49.9 / 74.2 60.0 / 76.8 37.5 / 40.4 44.6 / 48.3

SVM-Σ 3D obj. 94.8 / 78.6 93.4 / 81.7 72.1 / 78.7 73.0 / 80.6 51.5 / 81.2 64.7 / 83.9 41.9 / 44.3 53.0 / 56.7
SVM-Σ KITTI 94.8 / 77.2 94.3 / 78.3 70.4 / 77.3 70.4 / 79.6 49.7 / 79.0 61.2 / 80.4 39.5 / 41.8 47.9 / 53.3

Table 3: Multi-view detection results on KITTI [17]. Models have root and 4 parts per view.

without parts with parts
prior SVM-Σ SVM-Σ SVM-MV SVM-MV SVM-SV SVM-SV SVM SVM-Σ SVM-Σ SVM

KITTI 3D obj. KITTI 3D obj. KITTI 3D obj. - KITTI 3D obj. -
station wagon 71.2 70.2 64.5 63.6 62.6 61.9 61.9 82.7 81.9 79.0

convertible 24.4 24.0 12.9 10.8 13.8 11.7 12.7 50.7 36.8 12.0
coupe 67.5 67.1 63.7 67.0 60.5 57.7 67.1 79.9 76.6 76.5

hatchback 89.8 85.7 66.4 78.2 58.9 65.0 71.0 95.5 88.0 87.2
minibus 31.3 16.8 20.0 18.7 16.3 18.0 18.6 59.7 42.0 41.4
sedan 69.4 53.8 46.7 49.4 37.8 41.8 48.7 83.8 79.8 66.2
suv 19.7 14.7 8.1 7.3 5.2 8.0 8.6 34.5 35.1 16.4

mAP 53.3 47.5 40.3 42.1 36.4 37.7 41.2 69.5 62.9 54.1

Table 4: Car-type detection results on the KITTI [17] dataset.

VP accuracy of 75.6%, which is also reflected in the combined measures (65.2% AP+VP-D, 73.4%
AP+VP-C). Third, SVM-Σ-KITTI-car-type is the overall best method, outperforming the original
baseline SVM-KITTI-base by impressive margins, in particular for the combined measures (90.1%
vs. 86.6% AP, 75.1% vs. 68.7% VP, 66.1% vs. 53.3% AP+VP-D, 73.5% vs. 65.8% AP+VP-C).

Tab. 3 (left) gives the results for the best performing priors of Tab. 2 (SVM-Σ-KITTI, SVM-Σ-
3D Object Classes) in comparison to SVM-KITTI, now using parts. As expected, parts result in a
general performance boost for all methods (around 5% for all measures). The benefit of our priors
remains, for both granularity levels base and car-type, in particular for the combined measures:
SVM-Σ-KITTI-base outperforms SVM-KITTI-base by similarly large margins as for the no-parts
case (70.4% vs. 65.2% AP+VP-D, 77.3% vs. 72.1% AP+VP-C), and SVM-Σ-KITTI-car-type
outperforms SVM-KITTI-car-types by (70.4% vs. 66.8% AP+VP-D, 79.6% vs. 74.9% AP+VP-C).

Tab. 3 (right) applies a tighter overlap criterion for true positive detections (0.7 intersection over
union) [17]. Interestingly, this leads to a larger separation in performance between base and car-type
models, in particular in AP: e.g., SVM-Σ-3D Object Classes improves from 51.5% to 64.7%, SVM-
Σ-KITTI from 49.7% to 61.2% and SVM-KITTI improves from 49.9% to 60.0%, highlighting the
benefit of the fine-grained object class representation in particular for highly precise detection.

Lastly, we evaluate the performance of our fine-grained detectors on the level of the respective fine-
grained categories (car-types), as independent detection tasks. Tab. 4 gives the results without (left)
and with parts (right). Again, our priors SVM-Σ consistently outperform the baseline SVM for all
individual categories as well as on average by large margins (53.3% vs. 41.2% mAP for SVM-Σ-
KITTI without parts, and 69.5% vs. 54.1% with parts).

Summary. We conclude that our priors (in particular SVM-Σ) in fact improve performance for
simultaneous 2D bounding box localization and viewpoint estimation, for different levels of granu-
larity of the underlying object representation (base, car-type, car-model). Notably, our priors allow
for robust learning even on the most fine-grained level of car-models, where training data is scarce
and unbalanced and SVM fails. The combination of fine-grained representation and prior results in
a pronounced performance gain compared to SVM on the base level.

5 Conclusion

In this paper, we have approached the problem of scarce and unbalanced training data for training
multi-view and fine-grained detectors from a transfer learning perspective, introducing two flavors of
learning prior distributions over permissible detectors, one based on sparse feature correlations, and
one based on the full covariance matrix between all features. In both cases, we have demonstrated
improved simultaneous 2D bounding box localization and viewpoint estimation performance when
applying these priors to detectors based on basic-level category representations. In addition, the sec-
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ond flavor allowed us to learn reliable detectors even for finer-grained object class representations,
resulting in an additional boost in performance on a realistic dataset of street scenes [17].
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6 Supplemental material

6.1 Training and test data distributions for car, car-type and car-model category levels

In this section, we visualize the viewpoint distributions of the realistic street scene dataset (the
tracking benchmark of KITTI [17]) that is the basis of our experiments in Sect. 4.2.To that end,
we plot histograms of the number of car instances for each of 8 viewpoint (azimuth angle) bins,
separately for training (blue) and test (red) data, and distinguishing between three different levels of
granularity (car, car-type and car-model).
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Figure 4: Car train and test statistics over 8 viewpoint bins.

Fig. 4 shows the data distribution for the car class. Notice the unbalanced data distribution across
views. There are two main modes in the viewpoint distribution, at 90◦ and 270◦, which represent
back and front views. This behavior is expected, as in the KITTI dataset [17] the images have been
taken from a driving vehicle. On the other hand, the left (0◦) and right (180◦) facing views are
poorly represented. With only 16 right facing training examples, training a robust right-view car
template is extremely challenging.
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Figure 5: Car-types train and test statistics over 8 viewpoint bins.

Fig. 5 illustrates the train and test distributions for each of the 7 car types (station wagon, convertible,
coupe, hatchback, minibus, sedan, suv). We observe: i) the amount of training data available per car-
type varies dramatically; classes like station wagon, coupe, hatchback have much more examples
than convertible, minibus, sedan, ii) the training data distributions are skewed. There is not a single
car-type for which all viewpoints are represented in the training data, thus learning a full multi-view
representation for a car-type is impossible with a standard SVM framework. And iii), the train and
test distributions differ a lot for each car-type. For example, for sedan and convertible there are
viewpoints in the test set which are not represented in the training set.

Lastly, Fig. 6 illustrates the train and test distribution for each of the 23 different car-models we have
annotated. For most of the car-models, the viewpoint train and test distributions differ drastically.
For car-models like VW Touran, VW Passat, Opel Corsa, Opel Tigra, Opel Astra, Ford Ka, Ford
Fiesta, Fiat Punto, Fiat Panda, BMW 1 there is either none or at most 1 viewpoint that has both
training and test data. This poses a major challenge for learning a robust multi-view object detector.
In addition, the absolute number of available training examples for most of the car-models is rather
small (12 for Fiat Panda, 19 for Mini Cooper, 12 for Opel Astra etc.). In summary, the training and

11



0 45 90 135 180 225 270 315
0

50

100

150

200

audia4: train (20), test(18)

0 45 90 135 180 225 270 315
0

50

100

150

200

bmw1: train (39), test(36)

0 45 90 135 180 225 270 315
0

50

100

150

200

bmw3: train (57), test(237)

0 45 90 135 180 225 270 315
0

50

100

150

200

chevroletcaptiva: train (5), test(39)

0 45 90 135 180 225 270 315
0

50

100

150

200

fiatpanda: train (12), test(19)

0 45 90 135 180 225 270 315
0

50

100

150

200

fiatpto: train (60), test(84)

0 45 90 135 180 225 270 315
0

50

100

150

200

fordfiesta: train (32), test(48)

0 45 90 135 180 225 270 315
0

50

100

150

200

fordfocus: train (66), test(411)

0 45 90 135 180 225 270 315
0

50

100

150

200

fordka: train (37), test(79)

0 45 90 135 180 225 270 315
0

50

100

150

200

mercedesaclass: train (18), test(404)

0 45 90 135 180 225 270 315
0

50

100

150

200

mercedescclass: train (97), test(118)

0 45 90 135 180 225 270 315
0

50

100

150

200

mercedeseclass: train (89), test(113)

0 45 90 135 180 225 270 315
0

50

100

150

200

minicooper: train (19), test(45)

0 45 90 135 180 225 270 315
0

50

100

150

200

opelastra: train (12), test(136)

0 45 90 135 180 225 270 315
0

50

100

150

200

opelcorsa: train (39), test(404)

0 45 90 135 180 225 270 315
0

50

100

150

200

opeltigra: train (11), test(145)

0 45 90 135 180 225 270 315
0

50

100

150

200

opelzafira: train (19), test(35)

0 45 90 135 180 225 270 315
0

50

100

150

200

peugeot206: train (56), test(344)

0 45 90 135 180 225 270 315
0

50

100

150

200

renaulttwingo: train (79), test(37)

0 45 90 135 180 225 270 315
0

50

100

150

200

vwgolf: train (78), test(430)

0 45 90 135 180 225 270 315
0

50

100

150

200

vwpassat: train (26), test(156)

0 45 90 135 180 225 270 315
0

50

100

150

200

vwpolo: train (18), test(179)

0 45 90 135 180 225 270 315
0

50

100

150

200

vwtouran: train (75), test(46)

Figure 6: Car-models train and test statistics over 8 viewpoint bins.

test viewpoint data distributions tend to be skewed and sparse, especially on the fine-grained cate-
gory levels, which, in addition to the low numbers of training examples, represent serious challenges
when learning models for the fine-grained categories.

7 Prior visualization in 3D

In this section we visualize in 3D the SVM-Σ, SVM-MV and the SVM-Σ-NB2ALL priors learned
for the car class on the 3D object classes dataset [39]. For that purpose, we sample a cell (c, r) from
viewpoint v from the target model, which we call reference cell, and back-project on a 3D CAD
model the learned weights (dependencies) for that particular cell in the Σs (see Eq. (3) in the paper)
correlation matrix (Ks = I− λΣs).

Figure 7 visualizes the dependencies for an example reference cell. On the top of the figure, an
example target model of the car class, trained on the 3D object classes dataset [39] is shown,
along with the cell for which the weights in the prior are visualized (denoted as red cell). As each
cell has L = 32 dimensions, we average the dependencies across all of them. Each cell is back-
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Figure 7: Prior visualization in 3D and target model (row 1). Red indicates the reference cell. Prior
visualizations in 3D for the red cell: SVM-Σ (row 2), SVM-Σ-NB2ALL (row 3) and SVM-MV
(row 4). The black cube indicates the reference cell back-projected into 3D.

projected to 3D by aligning the model template with the 3D CAD model. The alignment is two
stage procedure involving viewpoint alignment in the first stage and template to rendered object
alignment in the second stage. In Figure 7 rows 2, 3 and 4 visualize the cell dependencies for the
SVM-Σ, SVM-Σ-NB2ALL and the SVM-MV priors, respectively (see Section 3 in the paper for
details on the different priors). The dependencies on the 3D CAD model are visualized from two
different views (left and right column). Red colors signify positive correlations, blue colors signify
negative correlations. If the cells are not correlated (all dependencies are 0), gray color is used.

Observations. The SVM-Σ model (row 2) reveals symmetric structures in the object itself, which
can be seen from the positive dependencies (red color) on the 4 wheels of the car for the reference
cell. SVM-Σ-NB2ALL (row 3) and SVM-MV (row 4) establish dependencies with only a few
cells in the model (lots of gray points) as they are both restricted to learning dependencies among
neighboring views (SVM-Σ-NB2ALL) or neighboring cells (SVM-MV) only.
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