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Abstract—Organizational structures such as hierarchies pro-
vide an effective means to deal with the increasing complexity
found in large-scale energy systems. In hierarchical systems, the
concrete functions describing the subsystems can be replaced by
abstract piecewise linear functions to speed up the optimization
process. However, if the data points are weakly informative the re-
sulting abstracted optimization problem introduces severe errors
and exhibits bad runtime performance. Furthermore, obtaining
additional point labels amounts to solving computationally hard
optimization problems. Therefore, we propose to apply methods
from active learning to search for informative inputs. We present
first results experimenting with Decision Forests and Gaussian
Processes that motivate further research. Using points selected
by Decision Forests, we could reduce the average mean squared
error of the abstract piecewise linear function by one third.

I. HIERARCHICAL DISTRIBUTED ENERGY MANAGEMENT

Future energy systems move from systems of relatively
few centrally organized units providing most of the power
demanded by consumers to many highly distributed units, call-
ing for manageable control mechanisms [1]. To deal with the
resulting complexity in scheduling power plants in the face of
uncertainties introduced by nature and technical deficiencies,
hierarchical organizations based on virtual power plants that
form autonomously can be employed [2], [3]. In our vision
of future energy management systems [2], inner nodes of the
hierarchy are called autonomous virtual power plants (AVPP)
and act as intermediaries on behalf of their subordinates–thus,
single nodes representing a collective. Power plants are thus
structured into systems of systems represented by AVPPs,
which can themselves be part of other AVPPs, as shown in
Fig. 1. We model power plants and AVPPs as agents. To
achieve a reduction of complexity in the optimization problem
to be solved by the overall system when creating schedules,
techniques are borrowed from model abstraction [4]. In partic-
ular, intermediaries approximate functional dependencies over
a combinatorial input domain stemming from the aggregate of
their underlying agents by repeatedly sampling input-output
pairs and substituting the actual functions by piecewise linear
functions [5].

In general, the problem to be solved constitutes a hier-
archical resource allocation problem [6]. The resource to be
allocated to a set of agents maps to their scheduled contribu-
tions in order to meet a predicted demand over a scheduling
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window W . This window consists of finitely many time steps
with a fixed resolution of typically 15 minutes. Agents have to
act proactively, i.e., create schedules, since they are subject to
inertia and cannot be assumed to react fast enough in case of
rapidly increasing (or decreasing) demand. With regard to the
case study, we derive the minimal set of constraints from the
physical requirements that power plants impose (see [7] for a
discussion of the literature): i) a minimal and maximal power
boundary, ii) discontinuity given the ability to be switched off,
and iii) functions limiting the possible change in production
over a certain period of time. The latter might not only depend
on the type of an agent but also on its current contribution.

From these physical constraints, we abstract minimal and
maximal contributions and switching on and off to a sorted
list of feasible intervals La. A power plant a that is capable
of being switched off or running between some boundaries
Pmin and Pmax would then, for instance, be represented by
La = 〈[0, 0], [Pmin, Pmax]〉. To allow planning for inertia in
a, we introduce functions

−→
Amin
a and

−→
Amax
a that return the

minimum and maximum contribution in a following time step
given the current contribution c. In the simplest case, we
consider a constant maximal change ∆P :

−→
Amin
a (c)

def
= max {Pmin, c−∆P} (1)

−→
Amax
a (c)

def
= min {Pmax, c+ ∆P} (2)

But of course, these functions can model richer systems than
that, e.g., consider a hot or cold start-up [7], or depend on
the current contribution as well as rates of change that map
combinatorially to the underlying agents [5] in case a itself is
an intermediary. In addition to that, cost functions κa return
the minimal costs incurred for a certain contribution.

We revisit the scheduling problem presented in [8] for
some inner node—called intermediary λ—since the problem is
solved top-down, as shown in Fig. 1. Each intermediary in turn
redistributes its assigned fraction of the overall demand Sλ[t] at
a given time step t to its subordinate agents Aλ until schedules
are assigned to all leaf agents, e.g., physical power plants.
The allocation aims to minimize deviations from the demand
(∆) as well as the incurred costs (Γ). Relative importance is
specified by the weights α∆ and αΓ. Note that the root node
Λ is assigned the actual total demand of the environment, i.e.,
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Fig. 1: A central and hierarchical solution example to a resource allocation problems. Inner nodes representing intermediaries
are marked by double circles and redistribute their assigned share of an overall demand, e.g., power.

SΛ[t] = Aenv[t].

minimize
Sa[t]

α∆ ·∆ + αΓ · Γ (3)

subject to ∀a ∈ Aλ,∀t ∈ W :

∃[x, y] ∈ La : x ≤ Sa[t] ≤ y,
−→
Amin
a (Sa[t− 1]) ≤ Sa[t] ≤

−→
Amax
a (Sa[t− 1])

with ∆ =
∑
t∈W |SAλ [t]− Sλ[t]| ,

and Γ =
∑
t∈W,a∈Aλ κa(Sa[t])

We propose two approaches based on self-organization for
problem decomposition to solve this problem:

• A so-called “regio-central” approach in which agents
transfer models to their intermediary which, at meso-
level, centrally optimizes the allocation [5], [7].

• An auction-based decentralized approach [2] where
agents need not submit their model but only bid on a
given demand based on their private capabilities.

Obtaining a good abstraction of an intermediary’s behavior
as a compact representation of the underlying subordinate
agents’ combined behavior is desirable for both algorithms.
In the regio-central case, one wants to simplify the resulting
optimization problems by reducing the number of decision
variables and constraints.

In the auction-based algorithm, an intermediary could, in
principle, have all agents bid simultaneously to a single auc-
tioneer, i.e., use a super-flat hierarchy. Clearly, this auctioneer
imposes a bottleneck with a rising number of agents. In a
truly hierarchical setting, an intermediary ought to be aware
of the physical boundaries of its subordinate agents before
submitting bids in order to avoid inconsistencies that need
to be (monetarily) punished by the organization [2]. As a
simple illustration, consider that an intermediary better not bid
for a contribution greater than 200 if it is comprised of two
underlying agents with a maximal contribution of 100 each.
Even if the summation of maximal boundaries constitutes no
computational effort, additional constraints from limited rates
of change and disconnectability make the problem harder. In
fact, an intermediary needs to solve an optimization problem
quite similar to Eq. (3) in order to calculate bids for a given
demand. Similarly to the “regio-central” approach, abstraction
has further to be applied to obtain a simplified model of the
intermediary that its own superior may use to compute bids.

II. OBTAINING ABSTRACTED MODELS

Having motivated the need for abstraction techniques, we
briefly revisit our existing approach [5] to discuss improve-
ments using active learning. An essential abstraction consists

of finding the possible contributions of an intermediary by
combining their lists of feasible intervals. Assume agent a1 can
contribute in [x1, y1] and agent a2 in [x2, y2]. Their combined
contribution must be in [x1, y1]⊕ [x2, y2] = [x1 +x2, y1 +y2].
The operator ⊕ naturally extends to lists of intervals by
combining in a Cartesian fashion and merging overlaps.

But now consider questions such as “What is the minimal
cost for an intermediary to contribute x?” or “What is the
maximal next contribution given the momentary state y”?
Both are optimization problems as generally there are several
configurations of subordinates to achieve joint contribution
x at different costs. We acquire an abstraction of functional
relationships by sampling the concrete function.

We illustrate this algorithm detailed in [5] with an exem-
plary intermediary v consisting of three agents Av = {p, q, r}:

Lp = 〈[0, 0], [50, 100]〉, κp = 13 (4)
Lq = 〈[0, 0], [15, 35]〉, κq = 70 (5)
Lr = 〈[0, 0], [200, 400]〉, κr = 5 (6)

where κa is the price per production unit such that the
agents’ cost functions are defined by: κa(x) = κa · x.
We derive the feasible contribution ranges for v and get
Lv = 〈[0, 0], [15, 35], [50, 135], [200, 535]〉. Sampling points
are selected from this contribution range equidistantly leading
to a sequence of optimization problems to be solved in order
to find sampling values κv(P ) storing the minimal costs to
produce a given contribution P of the intermediary v:

κv(P ) = min
Sp,Sq,Sr

∑
a∈Av

κa(Sa) subject to
∑
a∈Av

Sa = P (7)

Concretely, we might consider a sequence 〈κv(15), κv(25),
κv(35), κv(50), κv(75), . . . , κv(400)〉 to collect sampling
points. More sampling points typically correlate with higher
accuracy, as Fig. 2a shows.

However, if these input-output pairs are selected in a
weakly informative way, the resulting abstracted optimization
problem introduces severe errors in quality as well as bad
runtime performance as Fig. 2b (Unguided) illustrates where
25 equidistantly selected sampling points lead to a worse mean
squared error (MSE) (with respect to a validation set consisting
of 50 actually sampled points) than about 17 sampling points
at more informative positions.

The quality issue is understandable due to unfortunate
interpolations. The runtime problem is less obvious but stems
from the way MIP-solvers resolve piecewise linear functions
which might result in many integral decision variables or addi-
tional specially ordered sets that slow down the optimization.
In addition and as shown in Eq. (7), determining each sampling
point comes at the expense of solving an optimization problem
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(a) Accuracy affected by the number of sampling points selected.
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(b) MSE values for different sampling methods and point counts.

Fig. 2: Selecting the “right sampling points” is crucial for good accuracy. The cost function κv is only defined over the
(discontinuous) domain Lv = 〈[0, 0], [15, 35], [50, 135], [200, 535]〉.

itself. Thus, it is desirable to avoid asking for uninformative
points such as those between 200 and 400 in Fig. 2a. Even if
the sampling points are already obtained, removing redundant
points from the piecewise linear functions that enter the overall
optimization, i.e., scheduling power plants as described in
Eq. (3) is beneficial.

III. IMPROVING THE SAMPLING POINT SELECTION BY
ACTIVE LEARNING

However, obtaining a sampling point is very costly in terms
of time. The overall optimization problem must be solved
within 15 minutes, which imposes a strict time-limit. Active
learning can be used to tackle this issue. The active learning
meta-algorithm ‘uncertainty sampling’ creates a model with
few sampling points and iteratively refines it with additional
points in ‘interesting’ areas (areas with high uncertainty). This
technique can be applied with many regressors (e.g., Gaussian
Processes (GPs) [9], [10], [11] or Decision Forests (DFs) [12]).
A survey on active learning is presented in [13].

Of these options, DFs with linear models as leaf mod-
els [14] provide the best inductive bias for the given task: they
quickly develop high confidence for areas of linear continuities
and low confidence at other points. This closely corresponds
to the aim of building a piecewise linear function from the
sampled data points.

Each linear model at a tree leaf estimates p(y | x) as

p(y | x) = N
(
xT b, s2xT

(
XTX

)−1
x
)
, (8)

where b are the linear model parameters estimated by the
samples reaching the leaf, s is their expected measurement
error and X is their design matrix. The expected variance of
this normal distribution is therefore sensitive to the distance
to the nearest training data point as well as to the sample
coherence at the leaf. Hence, it can provide good confidence
estimates at points of discontinuity (c.t. [14, p. 58]). However,
we noticed that instead of combining the estimated variances
of the leafs of each tree to a single variance of a multimodal
Gaussian distribution, averaging them produced better results
in our experiments.

A comparison of confidence estimates of GPs and DFs is
given in Fig. 3b. The confidence estimation of the GPs is only

dependent on the closeness to the next sampling point, whereas
the DFs include the coherence of the observed training data
as well. This is reflected by the high uncertainty in the range
of about 15 to 100 in the DF model which contrasts the GP’s
estimation in this unsteady region.

IV. EVALUATION

To demonstrate the effectiveness of the approach, we
applied it in the scenario described in Section II. We ex-
perimented with the GPy1 implementation of GPs and the
Fertilized Forest library of DFs [15]. The full code can be
found online. 2 Each method started with 12 equally distributed
sampling points to train an initial regressor. Then we incre-
mentally added the point for which the learners’ uncertainty
estimate was highest and retrained the regressor.

As uncertainty estimate for determining the next point, we
did not use the σ2 estimate of the learner directly, but first
applied a convolution with a Gaussian mask (see Fig. 3b). The
variance estimate of the DF learner has sharp borders at leaf
borders of single trees. The convolution smoothes the borders
and combines information of the surrounding area to find more
relevant sampling points. Even though the sharp borders are
not present in the estimate of the GP learner, the smoothing
produced better results for that learner, too.

As evaluation measure for the regression with a fixed
amount of data points, we used the standard MSE. However,
the performance of the system over its entire trace (all amounts
of data points from 12 up to 54) must somehow be integrated.
We experimented with a weighted mean with decreasing
weights for higher amounts of data points, but found that this
resulted in unfair evaluations due to too low weights at the end
of the trace. This is why we used the mean MSE (MMSE) to
compare overall system performance. This allowed us to adjust
each learners’ parameters in a grid search, including the kernel
width of the Gaussian convolution.

In Fig. 2b, the resulting error traces of an unguided system
(using equally distributed points) compared to the results of
the guided systems can be found. With only 20 sampling

1Homepage: http://sheffieldml.github.io/GPy/.
2Experiment repository: http://git.io/buNW
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(a) Point selection order: The lighter the point color, the later it was
selected by the algorithm.
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(b) Smoothed (green, dashed) and smoothened (blue, solid) variance
estimations by the two methods given 50 observed points (squares).

Fig. 3: Query point selection by the two evaluated methods.

points, the system guided by DFs reaches the performance
of the unguided system with 34 sampling points. The system
guided by GPs reaches the same performance with 25 points,
but at more than double the runtime of the DF-guided system
(approx. a factor of 2.24). The mean MSE (scaled with 10−9)
for the entire trace is 0.28 (unguided), 0.26 (GP-guided) and
0.18 (DF-guided).

Figure 3a visualizes the order in which points have been
added to the training set by the two learners. The lighter the
point color, the later it was added to the training set. The
ideal selector selects points at discontinuities to the training
set early and points in areas of linear change last. The DF-
guided selection shows this behavior stronger than the GP-
guided selection as it refrains from selecting points in the linear
area around 200 to 400.

V. CONCLUSION

We motivated the necessity for and the requirements of
creating abstract models of collectives in the context of energy
management. By analyzing the constraints of the optimization
problem, we propose active learning as a natural extension
to our approach. In our first experiment, we analyzed the
possibilities to use Gaussian Processes and Decision Forests
in this context and introduced an error measure to be able to
evaluate both methods. Results indicate that both methods can
be used to achieve significant improvements. The properties
of Decision Forests, however, make them the most promising
candidate for this task. Future work consists of validating our
results for different compositions of intermediaries, integrating
our method into the optimization of the overall system, and
evaluating the effectiveness of the resulting abstractions in
terms of quality and runtime.
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