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Abstract

The field of Human Pose Estimation is developing fast and lately leaped forward
with the release of the Kinect system. That system reaches a very good perfor-
mance for pose estimation using 3D scene information, however pose estimation
from 2D color images is not solved reliably yet. There is a vast amount of pub-
lications trying to reach this aim, but no compilation of important methods and
solution strategies. The aim of this thesis is to fill this gap: it gives an introductory
overview over important techniques by analyzing four current (2012) publications
in detail. They are chosen such, that during their analysis many frequently used
techniques for Human Pose Estimation can be explained. The thesis includes two
introductory chapters with a definition of Human Pose Estimation and exploration
of the main difficulties, as well as a detailed explanation of frequently used methods.
A final chapter presents some ideas on how parts of the analyzed approaches can
be recombined and shows some open questions that can be tackled in future work.
The thesis is therefore a good entry point to the field of Human Pose Estimation
and enables the reader to get an impression of the current state-of-the-art.

Kurzbeschreibung

Das Gebiet der automatischen Schatzung der menschlichen Pose in Bilddaten (Hu-
man Pose Estimation) entwickelt sich schnell und hat mit der Veroffentlichung der
Kinect einen Sprung nach vorn gemacht. Das Kinect-System realisiert Posenschét-
zung zuverlassig mit Hilfe von 3D Daten, aber eine allgemeine, zufriedenstellende
Losung der Aufgabenstellung auf Grundlage von 2D Farbbildern gibt es bis jetzt
noch nicht. Einen Einstieg in dieses aktive Forschungsgebiet zu finden, gestaltet
sich schwierig, da zwar viele Forschungsveroffentlichungen aber keine Zusammen-
stellungen der wichtigsten Losungsstrategien existieren. Das Ziel dieser Arbeit ist
es, diese Liicke zu fillen: Durch die Analyse von vier aktuellen Publikationen gibt
sie einen einfithrenden Uberblick iiber wichtige Methoden fiir automatische Posen-
schatzung. Die vier Publikationen sind so gewéhlt, dass wiahrend der Analyse viele
wichtige Methoden aus diesem Gebiet erklért werden konnen. Die Arbeit beinhaltet
zwei einleitende Kapitel, in denen die Aufgabe der automatischen Posenschatzung
definiert und die wichtigsten Probleme benannt sowie Grundlagen erklart werden.
In einem abschliefenden Kapitel werden einige Ideen aufgezeigt, wie Teile der ana-
lysierten Losungsansétze zu neuen Ansétzen kombiniert werden kénnen, und offene
Fragen genannt, die in zukinftigen Arbeiten beantwortet werden kénnen. Diese
Arbeit stellt daher einen guten Einstiegspunkt in das Gebiet der automatischen
Schétzung der menschlichen Pose dar und ermoglicht dem Leser, sich einen Ein-
druck vom aktuellen Stand der Forschung zu machen.






Contents

1 Introduction 1
1.1 Applications . . . . . . . . ... 2
1.2 Related Work and Related Tasks . . . . . . . . .. ... ... ... 3

2 Principles of Human Pose Estimation 5
2.1 Theoretical Task Analysis . . . . . .. ... ... ... ... .... 5
2.1.1 Image Formation . . . . . ... ... ... ... ....... 5)

2.1.2  Variety of Human Appearance and Pose . . . . .. ... .. 8

2.2 Relevant Fields . . . . . . ... .. . 9
2.3 Foundations . . . . . . ... 10
2.3.1 Histogram of Oriented Gradients . . . . ... ... .. ... 10
2.3.2 Classifiers . . . . . . ... 11

2.3.3 Learning Strategies . . . . . . . . .. ... ... 15
2.3.4 Pictorial Structures . . . . .. ... 17

2.4 Task Definition and Choice of Analyzed Approaches . . . . . . . .. 24
3 Real-time Pose Recognition in Parts from Single Depth Images 27
3.1 Target Scenario and Processing Steps . . . . . . .. .. .. ... .. 27
3.2 Depth Sensing . . . . . . . . ... 29
3.3 Pose Estimation from Depth Images . . . . . . ... ... ... ... 31
3.3.1 Pixel Classification . . . . . .. ... ... ... .. ... .. 32
3.3.2 Joint Position Estimation . . . . ... ... ... ... ... 36
3.3.3 Data Generation . . .. .. .. ... ... 37

34 Results. . . . . .. 38
3.4.1 Evaluation . . . . .. ... 38

3.4.2 Discussion . . . . . ... Lo 40

4 Multiple Pose Context Trees for estimating Human Pose in Object

Context 41
4.1 Motivation and Concept . . . . . . . .. .. ... ... .. 41
4.2 Pose Context Trees . . . . . . . . . . 42
4.2.1 The Body Model . . . . . . ... ... ... .. ... ..., 42
4.2.2 Extension to Pose Context Trees . . . . .. ... ... ... 44
4.3 Using Multiple Pose Context Trees . . . . . . . . .. .. ... ... 46
4.3.1 Mathematical Formulation . . . . . . ... ... ... .... 47
4.3.2  Algorithmic Realization . . . . ... ... ... ... .... 48



ii

4.3.3 Implementation . . . . . .. ... ... 49

4.4 Results. . . . . . . . 51
4.4.1 Evaluation . . . . . . ... 51
4.4.2 Discussion . . . . . ..o 53

Learning Effective Human Pose Estimation from Inaccurate Annotation 55

5.1 Motivation and Concept . . . . . . . . . ... ... ... 55

5.2 Clustered Pictorial Structure Models . . . . . . .. ... ... ... 58
5.2.1 The Pictorial Structure Model . . . . . . . .. .. ... ... 58
5.2.2  Extension to Clustered Pictorial Structure Models . . . . . . 60
5.2.3 Detectors . . . . . . ... 62

5.3 Learning from Inaccurate Annotations . . . . ... .. ... .. .. 64
5.3.1 Removing Unusable Annotations . . . .. ... ... .... 65
5.3.2 FError Modeling . . . . . ... ... oL 65
5.3.3 Iterative Learning . . . . . . . . .. ... ... 66

54 Results . . . . . . . 67
54.1 Evaluation . . . . . ... .. ... oL 67
5.4.2 Discussion . . . . . . . ... 69

Multi-Level Inference by Relaxed Dual Decomposition for Human Pose Seg-

mentation 71

6.1 Motivation and Concept . . . . . . . . ... 71

6.2 Model Formulation . . . . .. ... .. .. ... ... ... ... 72
6.2.1 The Graphical Model and Variables . . . . . . .. ... ... 73
6.2.2 The Energy Function . . . . . . ... ... ... ... .... 75

6.3 Energy Optimization using Dual Decomposition . . . . . . . .. .. 79
6.3.1 Formulation of the Lagrange Dual Problem . . . . . . . . .. 79
6.3.2 Relaxation of the Lagrange Dual Problem . . . . . ... .. 81
6.3.3 Construction of Primal Solutions . . . . .. ... ... ... 83

6.4 Results. . . . . . . . 84
6.4.1 Evaluation . . .. ... .. ... .. ... .. 84
6.4.2 Discussion . . . . . . ... e 86

Conclusion 87

7.1 Reassembling the Parts . . . . . . . . .. ... ... ... ... .. 87
7.1.1 Dataset Acquisition . . . . . . . . .. ... 87
7.1.2 Pose Estimation . . . . . . ... ... ... ... 88
7.1.3 Evaluation . . . . . .. ... ... . 89

7.2 Outlook . . . . . . . . . 90



Acknowledgments 91

Bibliography 93
List of Figures 99
Nomenclature 101
Appendix |

A Digital Edition |

B Eidesstattliche Erklarung i

1ii






1 Introduction

Human Pose Estimation (HPE) is usually defined as estimating “[...] the config-
uration of a person’s body parts - or 'pose’ - in an image” [JE11, p. 1]. With
a wide range of applications from human machine interaction over surveillance to
diagnostics and man in the focus of interest, it is one of the most fascinating tasks
in the field of computer vision. Nevertheless, it remains unsolved in unconstrained
settings.

The latest big step towards a reliable solution has been achieved by Microsoft Re-
search and their team with Shotton et al. by finishing the development of the
Kinect [Kin10]. It is the first consumer device with capabilities for real-time mark-
erless motion capture (and HPE respectively) in a home-entertainment scenario.
The launch of the device was a great overall success, selling eight million units
during the first 60 days on sale [Guill]. It inspired a lot of professional and hobby
researchers to develop applications with the new interaction possibilities: the web-
site kinecthacks.com! offers 527 applications at the beginning of 2012 and counting.
At the same time, a lot of Kinects are used in research labs, e.g. on the Turtle-
Bot?. This widespread interest can act as a clue to what a big impact a significant
improvement of the solutions for HPE could have.

Consequently, a lot of research effort is made in working on the matter. With better
cameras and the availability of more computational power, many new methods for
computer vision are explored. The amount of submitted and accepted papers to
the “IEEE Conference on Computer Vision and Pattern Recognition” (a major
computer vision conference, in short CVPR) can be taken as an indicator for this
development, nearly constantly rising since the first conference took place in 1985
(see Figure 1.1).

Being an active field of research, there are no compilations of successful solution
strategies and frequently used techniques for Human Pose Estimation yet. The aim
of this thesis is, to fill this gap by analyzing four successful approaches. They are
chosen such, that many of the most important and most frequently used techniques
for HPE can be explained during their analysis. At the same time, the approaches
show how the techniques can be combined to form a well-performing system.

In the following chapter, the task of HPE is defined, difficulties are explored and
some frequently used techniques are explained. In each of the chapters three to

http://www.kinecthacks.com/
2http://www.willowgarage.com/turtlebot
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six, a current approach to HPE is described and analyzed. To conclude, in chapter
seven some ideas are presented on how some of the explained techniques can be
recombined. Furthermore some open questions are specified that can be tackled in
future work. With this structure, the thesis is a good entry-point to the field of
HPE and enables the reader to get an impression of the state-of-the-art.

2000
1500 —
Paper Submissions
1000 — — Total
Accepted
500

[ [ [ [ [ [
1985 1990 1995 2000 2005 2010
Figure 1.1: Submitted and accepted papers to the CVPR conference plotted by
conference year [CVP10, CVP11]|. Note that there is no data available for the
years 1987, 1990, 1995 and 2002. The values for these years have been interpo-
lated to provide a continuous series over time.

1.1 Applications

Apart from the applications mentioned above, there is a variety of other applications
for Human Pose Estimation. Faster computing platforms enable HPE solutions
for mobile applications with real-time processing of 3D-Data, e.g. for the Google
autonomous cars®. This trend might continue and new applications for smartphones
and other small devices can become realizable.

At the beginning of 2012, most applications can be categorized in the following
three major categories (compare to [MHKO6, pp. 1, 2]):

« Surveillance applications:

— People counting,
— Crowd flux measurement and congestion analysis,

— Action and behavior analysis, detection of abnormal activities.

3http://googleblog.blogspot.com/2010/10/what-were-driving-at.html
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1.2 Related Work and Related Tasks

e Control applications:

— Human machine interaction (e.g. Microsoft Kinect, Playstation Move?),
— Robot control,

— Virtual reality design.
o Analysis applications:

— Athlete performance analysis (e.g. for swimmers [Zecl1]),

— Automation (e.g. control of airbags, sleeping detection,
pedestrian detection),

— Orthopedic patient diagnosis (an overview of developments
in this specific field can be found in [ZHO08)),

— Video annotation and retrieval,

— Video compression (e.g. for video conferences).

1.2 Related Work and Related Tasks

Due to the uncommon approach of this thesis, no similarly structured work could
be found in the field of HPE. To give an overview of surveys with further references,
the most important ones are briefly discussed in the following paragraphs. Many
of them focus on different, but closely related tasks to HPE. An overview of related
tasks together with a short explanation of the difference to HPE can be found in
Figure 1.2.

The surveys by Moeslund et al. [MGO1, MHKO06] give an overview over publica-
tions in the more general field of “Human Motion Capture and Analysis” from
1980 to 2006. They have the aim to cover all papers published on the topic in
this timeframe, and structure them using a functional taxonomy as presented in
[MGO1]. For this task, the steps “Initialization”, “Tracking”, “Pose estimation”
and “Recognition” are used and the papers are classified according to their solution
for a specific step.

In 2007, Poppe published a survey [Pop07] focusing on Human Motion Analysis. He
describes the difference to human pose estimation as: “When poses are estimated
over time, the term human motion analysis is used” [Pop07, p. 1]. As stated
in this definition, the task of HPE is a part of the problem of Human Motion
Analysis and can be regarded as closely related. This survey does not claim to
be complete, but to “summarize the characteristics of and challenges presented by
markerless vision-based human motion analysis” [Pop07, p. 1]. Poppe classifies the
discussed approaches due to their type of classification algorithm, “model-based,

‘http://www.playstation.com/psmove/
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generative” and “model-free, discriminative”. For the model-based approach, the
steps “Modeling” and “Estimation” are discussed as sub-steps.

From 2007 on, several further surveys have been published. Most of them con-
centrate on publications for a specific application of HPE. Zhou and Hu give an
overview of developments in the field of Human Motion Tracking for rehabilitation
[ZHO08]. Wei and Yunxiao focuses on Human Motion Recognition and propose a
new taxonomy for that field [WY09]. The field of Pedestrian Detection is covered
in a survey of Enzweiler and Gavrila [EG09]. This survey includes extensive ex-
periments with a new proposed dataset for evaluation. In 2010 Poppe published
another survey [Pop10], now focusing on Human Action Recognition. In [WRB11],
Weinland et al. describe approaches to Action Representation, Segmentation and
Recognition. This is to our knowledge the latest survey in the related fields.

Action-focused

* Human Action Recognition
Finding out, what a detected
person is doing.

» Gesture Recognition
Tracking a person and map-
ping a gesture by specific body
parts to actions.

* Human Motion Analysis
Pose Estimation over time and
analysis of the movements.

Human Pose Estimation

Tracking-focused Different Model Representation
¢ (Human Pose) Tracking » Body Parsing
Getting a smooth estimate of Similar to HPE but annotating
the human pose over time. areas instead of skeletal
* People Tracking ,,bones* for each body part.
Tracking several people over » People Parsing
time. Similar to body parsing,
* Articulated Pose Tracking usually for more than one
Tracking people performing person.
strongly articulated poses, as it * Human Pose Segmentation
is the case in sports. Extracting the exact pixel-wise
* Human Motion Capture area of the image containing
Tracking a person to estimate the human.

the pose as accurately as
possible, often with the use of
markers.

Figure 1.2: Related tasks to Human Pose Estimation.



2 Principles of
Human Pose Estimation

2.1 Theoretical Task Analysis

The most general definition of the task of Human Pose Estimation is to estimate
the position of the pose-defining human body parts (ankles, knees, hips, shoulders,
elbows, hands and head) within digital scene information. As of the date of the
publication of this thesis, the most common information providers for HPE are 2D
color image sensors and 3D depth image sensors with a resolution of 320 x 240
pixels up to 1920 x 1080 pixels.

Figure 2.1 gives an overview of the image formation steps and of the searched func-
tion for HPE from sensor information based on light emission from objects. The
concept of the “Semantic World” in the top left corner describes the set of all infor-
mation about the physical world under a certain interpretation. This interpretation
can be chosen freely, but plays an important role for the pose estimation step, since
it specifies which things are interpreted as body parts and joints.

The bottom part of the figure shows the steps for image formation from the physical
world: the world is illuminated, the reflected light is concentrated on a measurement
plane and the resulting measurements are sampled to obtain a digital image. These
steps unfortunately involve non-injective projection functions, which means that
they are not invertible from the obtained image data (see Section 2.1.1). This
makes the specification of the searched HPE function (red arrow) very hard. In
the following two sections, several of the part problems of the task are explained in
detail.

2.1.1 Image Formation

Sensors make use of the perspective projection to collect scene data on their cap-
turing device. In the following paragraph, the Pinhole Imaging Model is explained.
It is a general model, specifying the basic point transformation applicable for most
imaging devices.

Figure 2.2 shows an illustration of the model. The light from the candle on the
right hand travels through a pinhole. It hits the image plane, where a capturing
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"'Semantic World"

N Pose Estimation

Interpretation

"*Syntactic World™ "Illuminated World"* Digital Image

Illumination Perspective Projection,
Sampling

Figure 2.1: Schematic overview of the image formation steps and the pose estima-
tion task. The interpretation can be chosen freely; the transformations marked
with yellow arrows are not injective and can not be inverted. The red arrow
represents the searched function for the pose estimation task.

image
plane

Figure 2.2: The Pinhole Imaging Model [FP02, p. 4].

b
pinhole ~ virtual
v image

device is installed. The image is received inverted, because the light rays pass
through the pinhole and keep their straight direction. In the theoretical model,
only one light ray per object point travels through the hole.

The “virtual image” shown between the pinhole and the candle is a theoretical
concept. It is located “outside” of the camera, just as far from the pinhole as the
image plane and thus is not inverted.

A camera would have a lens instead of the pinhole and a CCD or CMOS sensor
installed at the image plane, but the basic properties of the projection remain the
same. The projection function specifying where a point from the outer world is
registered on the sensor is called Central Projection. The equations describing it
can be derived in few steps.

Mathematical Model Let the origin of the camera coordinate system O coincide
with the position of the pinhole and let II be the image plane (see Figure 2.3). The
vector k is defined as a vector perpendicular to the image plane, thus O has the
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distance f (the focal distance) to II along k. With the two orthogonal vectors i
and j, the set (i, 7, k) forms an orthogonal basis for the camera coordinate system.

The line perpendicular to II and passing through the pinhole is called the optical
axis, and the point C' where it pierces II is called the image center. “This point can
be used as the origin of an image plane coordinate frame, and it plays an important
role in camera calibration procedures” [FP02, p. 5].

Figure 2.3: Central Projection of point Pon P (compare to [FP02, p. 6]).

Central Projection Let P = (%,7,2) be any point in camera coordinates and
P = (z,y, z) its image. The points P, O and P are collinear, since P is created
by the (stgght) ray of light from P through the pinhole in O. Because of this,

O? = \-OP, for a specific A, so

x AT
y = A9
2 = Az (2.1)
From this follows:
x y z . . . .
A== A A== A A= —, subject to & #£ 0,7 # 0,2 #0. (2.2)
T 0 Z

The point P is registered at the image plane at depth z = f, thus the values for x
and y are

N AL
Tz z
g:é = y:f-g, subject to 2 # 0. (2.3)
R z



Chapter 2 Principles of Human Pose Estimation

All sensors apply this transformation to environmental points to make measure-
ments at the image plane. This causes a loss of information, since the function is
not injective, thus not bijective and can not be inverted. This theoretical property
has severe impact on the difficulty of HPE (and many computer vision problems in
general). Pose estimation solely from 2D color images can only estimate the former
3D positions of the objects reflecting the measured light.

Since the projection function is not invertible, these estimations can fail badly. For
an example, see Figure 2.4. It shows a “Street Art” faked 3D scene on an appro-
priately colored flat surface. Though this is an unusual example of art specifically
designed to create a depth illusion, it illustrates the difficulty of the problem to in-
fer depth information from scene color in general. These aspects suggest statistical
approaches to deal with the infeasible parts of the pose estimation function.

i i L =Y _ .
(a) Street Art fake 3D image. (b) The same scene from the side, unveiling
the depth as illusion.

Figure 2.4: Artificial perspective 3D effects from image color [Stal2].

Even with 3D scene information from a local sensor, occlusions still lead to prob-
lems. However, pose estimation and background subtraction get easier, and with
the Kinect system, a reliable pose estimation system based on 3D scene information
is available.

The process of taking a digital image of the scene poses many problems, of which
just the two most important were mentioned in this section. Several books exist
that discuss the image formation process and also give solutions for some of the
occurring problems, e.g. [J05, Szel0)].

2.1.2 Variety of Human Appearance and Pose

Independent of the image formation process, the variety of human appearance itself
must be handled. With a huge variety of skin colors and their appearance under
different lighting conditions, it is hard to use any general color cues to localize
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humans. A broad variety in clothing and therefore different body shapes (e.g.
shape differences of people in bikinis and ski suits) prohibit the use of strict shape
models.

Additionally, the human body can show very different articulations of the extrem-
ities. The shoulder joint, the most flexible of human joints, allows to lift the arm
about 90° forwards and push it about 45° backwards. At the same time, the arm
can be lifted sideways about 90° and turned around its own axis for about 120°. Ad-
ditional to these movements, the joint can be slightly moved itself and the shoulder
blade further enhances the movement possibilities (see [Mar03, p. 6]).

Summing up these findings, it seems that the sheer variety of possible appearance
of humans in images can only be captured by statistical approaches with a lot
of training data. Clever training strategies can reduce this necessity for data.
Depending on the scenario, still a lot of variance must be captured and many
possibilities must be evaluated to create a system that can handle pose estimation
in general.

2.2 Relevant Fields

Many scientific fields can contribute to solve the aforementioned problems. The
following list shows some of them and gives examples of what they can provide to
improve HPE performance.

Neuroscience The Merriam-Webster Medical Dictionary defines Neuroscience as
“a branch (as neurophysiology) of science that deals with the anatomy, phys-
iology, biochemistry, or molecular biology of nerves and nervous tissue and
especially their relation to behavior and learning” [Mer12]. The problem of
finding out how consciousness “works” and how animals and humans solve
vision tasks successfully is far from being solved. Still, the reverse engineering
of brain structures can give inspiration for solving similar technical problems.
In this way, Artificial Neural Networks were invented and are now successfully
applied to various computer vision problems.

Philosophy The field of philosophy deals with “[...] gaining insight into questions
about knowledge, truth, reason, reality, meaning, mind, and value” [Gra99].
This includes questions on how observations can be used to infer information
about facts and reality. Knowledge modeling (ontologies), logic modeling and
formal logic could play a role in the further development of machine learning.

Physics and Engineering Physics is “the branch of science concerned with the na-
ture and properties of matter and energy. The subject matter of physics
includes mechanics, heat, light and other radiation, sound, electricity, mag-
netism, and the structure of atoms” [Oxf12]. The research and description
of optical phenomena is important for computer vision and can contribute to
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the development of sensors. New sensor technologies can have a big impact
on the development of HPE methods.

Mathematics Mathematics is the foundation of any computation technology. Specif-
ically for the development of HPE, several fields are especially important. Nu-
merical methods must be used to cope with the hardware calculation errors
when doing calculations on large amounts of data. Statistical approaches
can be used to do classification and find structures in the data. Opera-
tions Research methods are used to solve optimization problems efficiently.
Graphical Data Analysis is necessary to find visualizations for the usually
high-dimensional data and for evaluating methods. Until the date of this
publication, there is to our knowledge no satisfactory standard visualization
for the evaluation of HPE methods.

Computer Science This field combines methods and technologies from the others
and uses them to implement approaches to HPE on computing platforms.
Efficient algorithms and data structures are necessary to reach fast computa-
tion times. Digital signal processing methods are applied to the raw sensor
data to improve data quality. Data mining makes the efficient management
and usage of high amounts of data possible.

In the case of Human Pose Estimation, the approach to just imitate “how nature
does it” (which has been applied successfully several times in history, e.g. the well-
studied and now frequently imitated Lotus effect [Wik12]) can not be applied yet.
Scientists are working on reverse engineering the human brain, but with limited
success so far (as an example for promising work in progress, see the BlueBrain
project [Blul2]).

2.3 Foundations

In this section, some of the basic techniques are introduced that are used by HPE
approaches analyzed in this thesis. Not every technique is described in detail, but
the explanations in the following paragraphs should give the reader the possibility to
grasp the concepts of the analyzed approaches in the following chapters. References
to more detailed descriptions are provided for each topic.

2.3.1 Histogram of Oriented Gradients

The Histogram of Oriented Gradients (HOG) is a point descriptor developed by
Dalal and Triggs in [DT05]. A point descriptor describes a point by collecting
information within a clearly defined environment around it. The HOG descriptor is
based on image gradients and uses a rectangular environment to collect information
for describing the point. The processing pipeline for the creation of the descriptor
is given in Figure 2.5.

10



2.3 Foundations

Normalize gamma _
and co?or —>| Compute gradients

Input Image —>

Contrast normalize Cast weighted votes
over overlapping into spatial and
spatial blocks orientation cells

N

Figure 2.5: HOG descriptor creation pipeline (compare to [DT05, p. 2]).

The HOG descriptor is frequently used for detection and thus calculated for all
points in an image. The first step of this procedure is, to normalize the image in
gamma and color values, to make possible edges detectable in the next steps.

Then, the gradient image is computed. This can be done efficiently by convolving
the image with the two Sobel-filters [—1 0 1] and [—=101]". The results of the two
convolutions are converted to one image with gradient magnitudes, and one with
gradient orientations.

The next step gives the descriptor its abstraction possibilities. The information is
accumulated over several pixels, forming a cell. For human detection, the cell size
is chosen as 6 x 6 pixels. For each pixel within one cell, a vote to an orientation
histogram is calculated, equal to its magnitude. For human detection, 9 bins have
shown to be the most effective amount of bins. The sign of the orientation is
ignored, i.e. the angles are converted to be in [0; 180].

The cells are combined to 3 x 3 blocks. Several important normalization steps
are implemented across blocks and within a cell. For details, please refer to the
original paper [DT05]. The result of the method is a grid of point descriptors, i.e.
a grid of histograms with nine bins in each cell. Support Vector Machines, which
are explained in the following section, can be used for efficient object or human
detection on this grid.

2.3.2 Classifiers

Searching for an object or human in digital data can be realized with a detector.
It can work directly on the input data or on transformed data, such as an image of
point descriptors as described before. The detector can be created using a classifier
with at least one class for a “positive” match and one for a “negative” non-match.

Formally, a classifier C assigns to a sample from the instance space X a class from
all possible classifications ). The training algorithm building the classifier is called
inducer in the following explanations. The inducer Z maps a labeled dataset to a
classifier.

In the following two sections, the classifiers used by the analyzed papers are intro-
duced.

11
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2.3.2.1 Decision Trees

Decision Trees are instances of a tree-structured, graphical model. They can classify
two or more classes. For a detailed explanation, see [Mit97, pp. 55-80] and [Bis06,
pp. 663-666].

To classify an instance, the decision tree is traversed from the root node to a
leaf node. The non-leaf nodes are called split nodes. Each split node provides a
decision criterion with multiple possible results. The edges leaving the split node
each correspond to one of the possible decision outcomes.

Depending on the obtained decision from the currently considered node, the ac-
cording edge is used to get to the next node for traversal. A leaf node consists of a
classification or of information for obtaining a classification, such as a probability
distribution. The traversal ends at a leaf node.

For an example, see Figure 2.6. It shows a simple Decision Tree that could be
used to determine creditworthiness of people from datasets containing information
about income and the duration of employment.

Income > 50,000

Employed > 10 years

Yes No

Figure 2.6: Decision tree for samples with the features “Income” and “Employed”.
It could be used to determine the creditworthiness.

The Shannon Entropy and Information Gain Most decision tree inducers use a
measure for “information gain” to find the most informative decision criterions to
create a split node. In this section, no decision tree inducer is described, but the
information gain is used in Chapter 3 to define one. Thus, this measure is briefly
introduced.

The intuition for the use of the information gain measure for the creation of split
nodes is, that a split is regarded to be the most informative among a set of possible
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splits, if it splits the samples in subsets such that each subset contains samples of
as few classes as possible.

This property is measured usually by entropy, which gives an indication for the
homogeneity in the set. A frequent choice is the Shannon Entropy. For a set of
samples S, it is defined as:

)
Entropy (S) = ) —P; - log, (), (2.4)
=1

with P; being the relative frequency of samples with classification ¢ in the set
(compare to [Mit97]). With this choice, the entropy is maximal for a set containing
equally many samples of each class. As an example, see Figure 2.7. It shows the
entropy values for a set containing samples of two classes.

For an illustrative example, consider again the creditworthiness. A set of people
being all creditworthy has an entropy of 0, which means it is completely homoge-
neous. A classifier could simply classify the samples in this set, namely it could
give the result “creditworthy”. This is the reason, why decision tree inducers try to
find splits reducing the entropy in the resulting subsets.

In contrast, consider a set with equally many people receiving a “Yes” and a “No”
classification: in this case the entropy equals 1. This mixture of classes cannot be
easily classified, and additional splits are necessary to find a resulting classification.

1.0

0.8

0.2

I I I I I
0.00 0.25 0.50 0.75 1.00
P,

1

Figure 2.7: Entropy for a set of samples with two classes.
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With the definition of entropy, the information gain for a split of a set can be
defined. It specifies “[...] the expected reduction in entropy caused by partitioning
the examples according to the attribute” [Mit97, p. 57]. The information gain of
splitting set S along attribute A is defined as:

S|

Gain (S, A) = Entropy (S) — > o Entropy (5,) . (2.5)
vevalues(4) L/L subset entropy
weight

It gives the difference between the former entropy and the sum of the entropies in
the emerging subsets, weighted with their proportional size.

2.3.2.2 Support Vector Machines

The standard Support Vector Machine (SVM) is a binary linear classifier. It was
introduced by Cortes and Vapnik in [CV95]. It is a subtype of the more general
class of Kernel Machines. For a detailed explanation including Kernel Machines,
see [Bis06].

The SVM is a linear max-margin classifier. “The margin is defined as the perpen-
dicular distance between the decision boundary and the closest of the data points
[...]” [Bis06, p. 327]. A linear decision boundary is learned, which has a maximum
margin in both directions to the closest data points (see Figure 2.8). Maximizing
the margin in both directions gives a unique solution for the decision boundary
position.

The decision hyperplane is defined by the equation y(z) = 0, with

y(@) =w'e(z) +b (2.6)

where w is an appropriately chosen vector, ¢ (x) is a fixed feature-space transfor-
mation and b an offset. By using appropriate scaling factors, the function values
for the closest data points on each side of the decision hyperplane are normalized
to 1 and —1 respectively. These closest data points to the decision hyperplane are
called support vectors.

The decision of the SVM is determined by applying the linear decision function on
the new data point ' and determining the sign of y (z’). The classification result
of a linear SVM can be calculated very efficiently on images by using convolutions.

This standard approach can be generalized with the use of non-linear kernel func-
tions and can also be applied to linearly inseparable data. It is possible to build
multiclass SVMs, by “stacking” classifiers, i.e. the first decides whether a sample
belongs to class one or not, if not the second decides whether an example belongs
to class two or not, etc.
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margin

Figure 2.8: Illustration of the decision boundary choice for SVMs (compare to
[Bis06, p. 327]). The red line shows the decision boundary, the encircled data
points are support vectors. Note, that the position of all other data points is
irrelevant for the choice of the decision boundary.

2.3.3 Learning Strategies

Several training strategies exist to enhance the performance of the classifier, max-
imize the usage of the acquired data and estimate the final performance of the
classifier. These techniques are not bound to the use with a specific classifier or
inducer.

General Learning Scenario Let D = {vy,...,v,} be the set of available annotated
data. It consists of n labeled instances v; = (z; € X,y; € V). A classifier C maps an
unlabeled instance z € X to a label y € ), and an inducer Z maps a labeled dataset
to a classifier C. The notation Z (D, z) denotes the label assigned to the sample
x by the induced classifier from dataset D and is a short notation for (Z (D)) (z).
For all of the following explanations, it is assumed that there exists a distribution
on the set of labeled instances and that the dataset consists of independently and
identically distributed instances. Note that this is a strong assumption that will be
violated by most real world datasets.

The loss function is defined as 0/1 cost function. With V being the space of correctly
labeled instances V C X x ), the accuracy of classifier C is defined as

acce = P (C(z) = vy) (2.7)

for a randomly selected instance (z,y) € V, where the probability distribution to
select (z,y) is the same one used to collect the training set.
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Given a finite training set, the aim is to estimate the accuracy of a classifier trained
with a given inducer on a specific dataset.

2.3.3.1 Holdout

The most intuitive approach to obtain an estimation for the classifier accuracy is to
use the inducer only on a part of the dataset (the training set) to train the classifier
and to estimate its performance on the remaining samples (the holdout set). The
two sets are chosen as mutually exclusive, but exhaustive subsets of D, so formally
D = D, UD,. The estimated accuracy of the classifier on the holdout set is then
given by

1
acc, = —— Z 0 (Z (Dy, i), yi), (2.8)
‘Dh| (

xi,Yi) EDp

where 0 (a, b) is the Kronecker-delta function, being one if a = b and zero otherwise.
It is possible to give a confidence interval for the estimated accuracy (see [Koh95,

p. 2]).

However, this method makes inefficient use of the data, since the holdout set is
not used for the training of the classifier. To get a better estimate of the classifier
accuracy, larger holdout sets are favorable; to reach a better classifier accuracy,
smaller holdout sets are favorable.

Additionally, adjusting the parameters of the inducer to improve the performance
on the holdout set might lead to overfitting. To avoid this, another validation set is
necessary. This further reduces the amount of data available for training (compare
to [Bis06, p. 32]).

2.3.3.2 Cross-Validation

A technique avoiding these pitfalls is cross-validation. “The dataset is split into
k mutually exclusive subsets (the folds) Dy, D, ..., Dy of approximately the same
size” [Koh95, p. 2|. To get an estimation of classifier accuracy, the inducer is used
k times. For trial ¢t € {1,...,k}, the dataset D\D; is used for training and D; is
used for testing. The estimate for the classifier accuracy is calculated as

k
accoy = 7112 Z 3 (Z(D\Dy,x;) ,y:) - (2.9)

t=1 (x;,y;)€D:

The estimation of classifier accuracy makes use of the entire dataset, since every
sample is once in the test set. However, it is subject to the choice of the k folds:
for a very unlucky choice of the folds, each fold could contain samples from which
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the inducer cannot construct a capable learner, but if the inducer could make use
of the entire dataset it could succeed.

Complete cross-validation tries to avoid this risk, by estimating the classifier accu-

racy as the average of the Z possible k-fold cross-validation results. However,
k

this very elaborate solution requires a lot of computational power.

An always complete application strategy for cross-validation is the leave-one-out
method (n-fold cross-validation). It can be applied when data is particularly sparse.

For a sufficiently high amount of data, a confidence interval can be computed for
cross-validation, similar to the holdout method (see [Koh95, p. 3]).

2.3.3.3 AdaBoost

AdaBoost (short for “Adaptive Boosting”) is a meta learning strategy for binary
classifiers and was developed by Freund and Schapire in [FS97]. It combines the
decisions of many weak classifiers to one, more capable classifier.

In an iterative process, the classifiers are combined using the information of a
weighted error function. In each iteration, the most capable of the classifiers is
added to the ensemble with a specific weight for its vote. The weights for the
error function are updated such, that samples more likely to be misclassified by
the ensemble so far receive higher weights, whereas samples likely to be classified
correctly receive lower weights. Then the next iteration is done. The ensemble

classifier output is a majority vote. For a detailed explanation of the process, see
[FS97].

2.3.4 Pictorial Structures

The concept of Pictorial Structures was developed originally by Fischler and El-
schlager in 1973 in [FE73|. The key idea is to explicitly model the appearance of
an object as configuration of specific object parts (see Figure 2.9). Felzenszwalb
and Huttenlocher made the approach popular for object detection in 2000 by spec-
ifying an efficient detection approach in [FHO0]. Felzenszwalb continued to develop
object detection algorithms with it [FH05, FGMR10]. It is used for many tasks in
computer vision and has also been adopted for Human Pose Estimation (e.g. by

Andriluka et al. [ARS09]).

2.3.4.1 Motivation and Modeling Framework
Figure 2.9 illustrates the key concept: deformable objects with very different shapes

can be modeled as collection of static, reoccurring object parts. Detectors can be
used to detect these parts and their results can be combined. Thus, the detectors
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LEFT
EDGE

MOUTH

Figure 2.9: Face model by Fischler and Elschlager [FE73, p. 11]. The appearance
of the face is modeled as configuration of the face parts. The springs illustrate
the connection functions for the parts.

do not have to capture the high variability of the possible locations of the parts
within the complex model. Since the human body can show so many different
configurations of the body parts, especially the extremities, this technique can help
to reduce the variance that must be captured by the detectors.

In a modeling step, the object is modeled as a collection of parts with connections
between some of the parts. For the connected parts, a connection function is spec-
ified which captures the possible combinations of the object parts. The connection
function can be chosen dependent on the object to detect. With this design Pictorial
Structures are very flexible and allow the specification of many object types.

Formally, the object model is described with a graph (V| E), consisting of n vertices
V ={vy,...,v,} and edges E. Each vertex represents one object part and the edges
capture the connection function between two connected parts. In order to apply
the efficient matching algorithms developed by Felzenszwalb and Huttenlocher, it
is necessary that the model has a tree structure.

For each object part node v;, there is an observation node [;, which represents the
current observation (usually location, scale and orientation) of the part. The obser-
vations [; are referred to as part configurations. A complete instance of the detected
object is given by the object configuration L = (Iy,...,[,). For an example model,
see Figure 2.10. The depicted model is a standard model for human detection and
will be explained in one of the following sections.

2.3.4.2 The Bayesian Matching Framework

After having defined a modeling framework, it is critical to find a matching frame-
work, so that modeled objects can be detected automatically. The matching frame-
work is derived with a Bayesian approach.

From a probabilistic point of view, the best (most probable) configuration L* for
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the model (V, E) in image I with the learned model parameters © is searched, i.e.

L* =argmax P (L|1,0). (2.10)
L

The model parameters consist of three components: © = (u, F,¢). The first com-
ponent, u, contains appearance parameters for the body parts, E are the edges of
the graph and indicate which parts are connected, and ¢ = {¢;;| (v;,v;) € E} are
the connection parameters for each connection. All parameters can be learned from
data, however E is often fixed in the modeling step (as it has been done for the
human model in Figure 2.10). The probability for a configuration is reformulated
with the Bayes formula as

P(I|L,©) - P(L|©)

P(L|1,0) )
x P(I|L,0) . P(L]). (2.11)

Configuration matching prob. Configuration prior prob.

The term P(I]|©) describes the probability of observing an image, given the model
parameters. This probability can hardly be estimated and is assumed to be equal
for all images. Thus, it can be reduced to a constant scaling factor and omitted,
since a positive constant factor leaves the order unchanged in the maximization
step.

Matching Probability In the simplified representation in Equation 2.11, the mat-
ching probability P (I|L,©) occurs, specifying the probability of observing an im-
age, given a configuration and the model parameters. This probability is modeled
as the product of the individual likelihoods of observing the object parts at their
specified locations:

P(I|L,0) = P(I|L,u) = ﬁ P (I]li,wi) . (2.12)

i=1

© can be reduced to the relevant appearance parameters. The values of the ap-
pearance terms P (I|l;, u;) are estimated by applying a detector to the image region
defined by [; with parameter u;. Here the meaning of the appearance parameters
becomes clear: they capture the learned parameters for the detector.

The second term P (L|O) in Equation 2.11 specifies the probability for a specific
configuration given the model parameters. Note that this probability does not
depend on the image. The further modeling steps for P (L|©) are explained in the
following section.
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2.3.4.3 Derivation of the Prior Probability Representation

The graph describing the Pictorial Structure Model (PSM) must be tree-structured
(in the following explanations, the example in Figure 2.10 is used). It represents a
graphical probabilistic model, with an edge from v; to v; indicating dependency of
v; only on v;. This includes the assumption, that the probability for a configuration
of one part is independent of all other part configurations given the configuration
of the parent part. This is a strong assumption which is violated in many cases,
e.g. by mutual occlusions of body parts.

The distribution describing the probability for an object configuration is given by

P(L|®) = P (lo|®) - ] P (14l1:,0). (2.13)

(vi,vj)GE

This also reflects the natural interpretation of the model: the combined probability
is the probability for the root part configuration, iteratively multiplied with the
probabilities of the child part configurations. For example, the probability for a
configuration of the human-model in Figure 2.10 is

P(LI®)=P|©)- PUp|l;,©) - P(lrualle, ©) - P(ly1a]ls, ©) - . ... (2.14)
Torso conf. Head c. given torso c. Right arm c. given torso c.

The conditional probabilities in the part terms can be rewritten as

P(l;,1;|©)
P(L|l;,0) = —=2 L2 2.15
which leads to the formulation of the entire probability as
P(l;,1;|©)
P(L|O) = P (lyo0t|©) - H — (2.16)
A Pwe)

Each term P (1;|©) in the denominator in this equation occurs as often as an edge
leaves the node v;. The degree deg (v;) of node v; is defined as the amount of edges
coming to or leaving v; in the graphical model. Since the model is a tree, the
amount of edges leaving the node v;, is exactly deg(v;) — 1. This is, because in
a tree every node has exactly one parent, except for the root node that has only
leaving edges (the amount of edges leaving the root node is deg (v,0)). Thus, the
probability can be written as

H('Ui,’Uj)EE P (Z’H l] |9)

P<L‘@) = P<lroot|@) : eo(v;)—1°
P (lroot|®> : HviEV P (lz|9)d g(vi)—1

(2.17)
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This leads to the representation frequently used in literature (e.g. in the derivation
of Felzenszwalb and Huttenlocher [FHO05, p. 10]):

H(’Ui,l}j)GE P (ll7 l] |@)
Mev P (i]0©)" =71

P(L|O) = (2.18)

A strong approximation is used by assuming that P (I;|©) = 1. This means, that
the absolute configuration of object parts is not used for inferring the most likely
object configuration. The prior is then formulated as

P(L|©)=P(LIE.c)= [[ Pslley). (2.19)

(vi,vj)EE

The terms P (I;,1;|c;;) are the prior terms for each pair of connected body parts.
These probabilities are estimated using the aforementioned connection function.

Connection Function There are many possible choices for the connection func-
tion, dependent on the modeled object. However, it must be possible to express
it in a specific form to apply the efficient matching algorithms of Felzenszwalb
and Huttenlocher. This form is a Diagonal Gaussian Normal Distribution over the
displacement in a common coordinate system, i.e.

P (li, ljlci;) = N (Tij (i) — Tji (1) , 0, Dij) (2.20)

where additional parameters for the transformation functions 7;; and Tj; as well as
the standard deviations D;; are encoded by the connection parameter c¢;;. D;; is a
diagonal covariance matrix and its entries are learned from the data. For each part,
a “connection point” is defined in the parts own coordinate system (for an example,
see Figure 2.11). T;; and T}; are bijective functions, determining the connection
point position for the connected parts in a common coordinate system, usually the
image coordinate system.

The transformation functions are determined in a modeling step and must be chosen
such that for an optimal pair of locations, the difference Tj; (I;) — Tj; (I;) becomes
as small as possible. Example choices can be found in [FHO05, p. 22] and [FHO5,
p. 29-31]. A possible choice for the use for Human Pose Estimation is explained in
Section 2.3.4.5.

2.3.4.4 The Final Optimization Problem

With the results from Equation 2.12 and Equation 2.19, the original Bayesian
formulation in Equation 2.11 can be rewritten as

P(L|I,0) x P(I|L,©)-P(L|O)
= HP(I|li7“z‘)' H P (l5,1|cq5) - (2.21)

i=1 (vivy)EE
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To simplify the optimization problem, it is possible to take the negative logarithm of
this formula. This inverts the problem (now minimization instead of maximization),
but keeps the order of ratings for the configurations. Since only the configuration
with the maximum probability is searched but not the exact probability value, this
loss of information is acceptable.

Defining the matching function m; (I;) = —log P (I]l;, u;) and the distance function
di; (li,l;) = —log P (l;,1;|c;;) leads to the final minimization problem to find the
best matching configuration L*:

=1 (viv;)€E

This minimization problem can be solved very efficiently with generalized distance
transforms (see [FHOO]).

2.3.4.5 Pictorial Structure Models for Human Pose Estimation

The most commonly used Pictorial Structure Model for Human Pose Estimation
models the human body as collection of ten body parts: head, upper and lower
arms, torso and upper and lower legs (see Figure 2.10). The edges in the model
are usually fixed and not learned from data. The observation nodes represent the
observed configuration for a specific body part.

llll lrll

Figure 2.10: Pictorial Structure Model graph for human appearance. Associated
observation nodes are shown as yellow rectangles.

The second important modeling step is the choice of the transformation functions
T;; and Tj;. This choice defines the likeliness of a part combination and thus has a

22



2.3 Foundations

strong impact on the model matches. There are many possibilities for the definition
of these functions. As an example, the definition by Felzenszwalb and Huttenlocher
in [FHO5] is introduced here.

With the high flexibility of the human body, it is necessary to model the joints
between the parts deformable. Still, preferably many constraints should be added,
to benefit from additional information in the inference step.

]
U

(a) Each part in its own coordi-
nate system (indicated with the
crosses) and the position of the
connection point (circle).

(b) The ideal configuration of the part pair. This
configuration has maximal probability. Differ-
ence in any dimension (position, scale, rotation)
will result in lower probability values.

Figure 2.11: Two connected parts of a Pictorial Structure Model [FHO05, p. 29].

For an illustration of the modeling idea, refer to Figure 2.11. For each of two con-
nected parts, a location for the connection point (z;;,v:;) and (xj;,y;:) is specified
in the coordinate system for the according part. In an ideal configuration, both
connection points coincide. Additionally, the relative rotation of the parts and sim-
ilarity of their scale is considered for calculating a final probability. This model
setup allows fine tuning in several parameters, while still allowing a lot of variance

if needed.

Let l; = (4, ys, 8, 0;) and [; = (z;,y;, 55, 0;) be the configurations of two connected
parts (consisting of x and y coordinate, scale and orientation), and 6;; be the ideal
difference between their orientations. Then the probability for the two locations is
modeled as product of the Normal Distributions around the optimal configuration
in the respective dimension, i.e.

P (l;,llci;) = N(I; — x;,(),ai) - (4 Horizontal diff. of conn. points)

N (y; — 5,0, Uz) - (4 Vertical diff. of conn. points)
N (si — 55,0, af) - (4= Scale difference)
M (0; —0;,0,;,k) («+ Rotation difference), (2.23)

where M is the von Mises distribution (a concept similar to the Normal Distribution
in circular coordinate systems), and (z,y.) and (xQ,yé) are the connection point
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positions in image coordinates. These coordinates can be obtained by applying the
transformations of rotation (Ry is the matrix for the rotation by angle 6 around
the origin), scaling, and translation to the part detection points, i.e.:

, . ..
() ()om().

yi yz ?ng

x/A €T €Ti:

J = J + 5 - Ry. A 2.24
(%) (yj> ! 9](%-@') (224)

However, it is necessary to specify P (I;,|c;;) as multidimensional Diagonal Normal
Distribution to apply the efficient matching algorithms. This can be achieved by
transforming the von Mises Distribution to a Normal Distribution (for the steps,
refer to [FHO5, p. 30]), resulting in the following definition:

T%j (lz) = (I’;, y;, S;, COS (97, —I— 0”) 7Sirl (0, —f- 01])) s
Ty (l) = (2,4}, 55,cos (6;) ,sin (0;))
. 11
D;; = diag (05703,057 2 k:> ,
P (li, lileiy) oo N (Tij (Ii) — Tji (1) , 0, Dyj) - (2.25)

Note, that the z,y and s components remain unchanged from Equation 2.23 and
are just split between the 7;; and Tj; functions. The remaining two dimensions
originate from the conversion of the von Mises distribution. The conversion is
also responsible for the “proportional to” sign, instead of an equal sign, since an
approximation step is used.

The remaining parameters for each connection are
_ 2 2 2
Cij = (ZL’U, yija l’ji, yji> Uz, O'y, O'S, 91']', k’) s (226)

and can be learned from training data using maximum likelihood methods (see
[FHO5, p. 30]).

2.4 Task Definition and Choice of Analyzed
Approaches

The aim of this thesis is to give an overview of techniques applied for Human Pose
Estimation for 2D color images. The pose is estimated from depictions of humans;
the color images originate from any common color sensor camera and contain the
human figure at a size of approximately 160 pixels. The images must show sufficient
illumination and contrast to show the outlines of the human figure.

Similar restrictions are applied by current publications. Four are chosen to reflect
the state of the art and to show most techniques that are applied to realize HPE.
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[SFC*11], by Shotton et al. The first paper analyzed describes the algorithms
of the Kinect pose estimation system. It is chosen despite the approach is
based on 3D scene information, since the Kinect system is the only currently
available system to our knowledge that reaches satisfactory pose estimation
performance in real-world scenarios. Additionally, the Kinect system might
enable for easier data acquisition for new pose estimation approaches. The
paper received a best-paper award at the CVPR 2011.

[SKN10], by Singh et al. Contextual knowledge, especially about human inter-
action, can significantly improve pose estimation performance. This paper
describes an approach incorporating contextual knowledge into the pose es-
timation process. It is based on a combination of Pictorial Structures and a
pose estimation approach by Deva Ramanan [Ram07]. The work by Singh et
al. received a best paper award at the Conference on Structured Models in
Computer Vision 2010.

[JE10], by Johnson and Everingham The requirement of large datasets has been
explained already in this introductory chapter. Johnson and Everingham
propose a new, large scale data acquisition method for HPE. To meet the
requirements of the large datasets, they introduce Pictorial Structures in an
extended framework called Clustered Pictorial Structure Models. It can deal
with extremely articulated poses and reaches very high pose estimation per-
formance on the major HPE evaluation dataset.

[WK11], by Wang and Koller This publication by Wang and Koller explains how
high level information from Pictorial Structure matching can be combined
with low level per pixel segmentation information. An energy function is
assembled that combines these different levels of information. Wang and
Koller apply relaxed dual composition to include infeasible energy functions
in the optimization process. Their concept combines multiple methods and
improves their common results.
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3 Real-time Pose Recognition in
Parts from Single Depth Images

The Microsoft Kinect [Kinl0] is a game controller released at the end of 2010. Tt
made a new interaction paradigm possible: with real-time motion capture, the de-
vice allows to control games and applications directly by body movements without
physical contact to any device. It works reliably in home-entertainment environ-
ments.

To achieve this performance, it relies on depth information from the Kinect sen-
sor. The algorithms used to realize real-time HPE are in parts explained in the
publication “Real-time Pose Recognition in Parts from Single Depth Images” by
the developers Shotton et al. [SFC*11]. In this chapter the approach by Shotton
et al. is analyzed, complemented with a short explanation of the depth estimation
process of the Kinect sensor.

3.1 Target Scenario and Processing Steps

At the beginning of 2012, two versions of the Kinect system are available: one
for the use with the Microsoft Xbox 360 game console and one for the use with
a desktop computer. Both versions rely on the same software algorithm and have
similar environmental restrictions:

e they must be used indoor,

o the user(s) must abide by specific range restrictions (see Figure 3.1).
On the other hand, the system can deal with:

o dark environments and changing light conditions,

e people moving through the background,

« occlusion of body parts by users and objects,

e leaving and re-entering the sensor area,

« different body sizes and shapes, skin colors and clothes.

To provide these features, hard and software must work together closely in a fine-
tuned processing pipeline.
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Distance from sensor (m)

0 4 8 3 4 8

Default
Mode

Near
Mode

I Unknown [ Too Near [ Normal [ JTooFar

Figure 3.1: Range restrictions of the Kinect sensor (compare to [Kinl2]). The
“Near Mode” is only supported by the desktop version of the sensor.
For ranges marked with Unknown, no distance estimate is available. For ranges
marked with Too Near and Too Far, estimates are made, but might be inac-
curate.

A schematic overview over the pipeline is given in Figure 3.2. The steps which are
vital for the high pose estimation performance, the steps one, three and four, are
analyzed further in the following sections. Section 3.2 focuses on the hardware of
the system, explaining how the depth image generation works and what information
the hardware delivers to the pose estimation algorithms. With these explanations
it becomes clear, why the aforementioned restrictions exist. In Section 3.3, the
algorithms used to process the depth image and to do the pose estimation are
explained in detail. Shotton et al. only provide information on steps three and four
in their work [SFCT11].

Hardware Software
i 3. Infer body parts
1. Capture depth image 2. Remove background ber pixel
4. Cluster pixels for 5. Fit model and
joint hypotheses track skeleton

Figure 3.2: The processing pipeline of the Kinect pose estimation system (compare
to [SFCB11]). The steps one, three and four are discussed in this chapter.
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3.2 Depth Sensing

The Kinect sensor, providing the capabilities for the first processing step of captur-
ing the depth image, has been developed by PrimeSense and is licensed by Microsoft.
After the release of the device, iFixIt presented a teardown [iFil2] and analysis of
the hardware. The sensor contains all major parts of a computer, from a mainboard
with cooling system, 64Mb ram and flash memory to the imaging technology with
an infrared projector and two CMOS cameras, amongst other parts. The core of
the device is the PrimeSense image processor. The overall concept is illustrated in
Figure 3.3 and Figure 3.4.
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Figure 3.3: Hardware concept of the Kinect sensor [Pril2b]. Note, that the arrows
to and from the “4 external digital audio sources” suggest, that this label is wrong.
“audio sources” means speakers, but the depicted data and control flow implies
audio sensors.

In Figure 3.3, the main hardware components and their functional connections are
shown. The very left hand side of the graphic shows audio components that will not
be discussed further in this work. Memory access is possible for the processor with
a flash chip. The USB-connection allows for transmission of data to and from the
connected host computer. Three components are responsible for the visual sensing;:
a pair of an infrared light projector and a CMOS sensor for depth images, and one
CMOS sensor for standard color images.

How the depth image transmitter/receiver pair works together is illustrated in
Figure 3.4. The infrared projector projects a pattern into the scene in front of the
sensor and the CMOS sensor takes images of the scene with the projected pattern.
The processor combines the knowledge of the projected pattern with the captured
CMOS image to calculate the depth image. The process of depth estimation using
this pattern is a patented technology by PrimeSense called LightCoding.
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Chapter 3 Real-time Pose Recognition in Parts from Single Depth Images

Figure 3.4: Depth sensing concept of the Kinect sensor [Pril2a].

LightCoding The infrared projector projects a pseudo-random speckle pattern
into the room in front of the device. The pattern is characteristic for each sensor
device and fixed during the assembly process. An example image of such a pattern
can be found in Figure 3.5.

The figure shows a Kinect device (bottom of the image) and the projected pattern
on a flat white surface. The arrangement of the blue points slightly shows a 3 x 3
checkerboard pattern with nine tiles, with a brighter dot in each tile center. A
pincushion distortion effect is visible due to the projection properties of the lens.

This image is captured by the dedicated depth image CMOS sensor, as shown
in Figure 3.4. The processor of the Kinect sensor calculates the depth of all the
pattern speckles. This is done using the intrinsic and extrinsic camera and projector
parameters and the knowledge of the pattern. With the support of the center
points of each tile and the knowledge of the tile pattern, the depth of the other
points within a tile can be inferred quickly by using depth information from the
neighboring points [Viall, p. 11]. As to our knowledge, more information about
the depth inference process is not available from public sources.

The aforementioned environmental restrictions originate from the speckle pattern
projection: outdoor, the sunlight is strong enough that the infrared speckles can not
be found by the sensor [Viall, p. 23]. The range restrictions are due to perspective
distortion of the pattern. For larger distances, the speckles are further apart from
each other, resulting in an unacceptable sampling density and bad depth estimate.
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3.3 Pose Estimation from Depth Images

Figure 3.5: Speckle pattern projection of the Kinect hardware [fut11] with marked
tile borders (black dotted lines). The borders were added to the image manually,
because they are hardly visible on the printed image. The brighter dots in each
tile center are not visible in the printed image.

All mentioned calculations are done by the processor on the Kinect sensor device
and ready-to-use depth images with a resolution of 640 x 480 pixels are transferred
at a rate of 30 Hz to the host computer. The accuracy of the depth estimation
(approximately 0.4 cm at 1 m distance up to 5cm at the maximum distance of 4 m
[Viall, p. 16]) is sufficient to capture characteristic body part shapes.

3.3 Pose Estimation from Depth Images

The first step carried out by the software when receiving the depth images is sub-
tracting the background and creating a user mask. The result of this preprocessing
step is an image mask with one ID for each pixel (for an example, see Figure 3.6).
This ID can either be a background flag or a user label, stating for each pixel
whether it belongs to the background or to which user. This important preprocess-
ing step is not described in [SFC*11] and no further information could be found
on how it is implemented in the Kinect system.

The pose estimation algorithm gets the depth image and the background /user-label
map per frame. Thus, the task of Human Pose Estimation can be broken down
into the following main steps:

1. a per-pixel classification task to identify body parts (step 3 in Figure 3.2),

2. a clustering of pixels to eliminate noise and to estimate the joint positions
(step 4) and finally

3. a model fitting and tracking step to track the body joint positions over time
(step 5).

31
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Figure 3.6: Input image to the pose estimation algorithms. For each pixel, the
estimated depth and a label is available, labeling the pixel with a user ID or
a background flag (here: black - background, blue/green/red shade - user
labels). The depth information is illustrated with different brightness levels.

3.3.1 Pixel Classification

For the task of pixel classification, the human body is split into 31 parts of interest
(see Figure 3.7). Some of them represent skeletal joints, the others fill the gaps or
can be used in combination to predict body part positions, e.g. the four body part
classes of the head (left upper, left lower, right upper, right lower). Let C' be the
set of body part classes. To classify a pixel as one of the body part classes ¢ € C,
a Decision Forest trained on a set of discriminative depth comparison features is
used.
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Figure 3.7: Pairs of depth images and images with body part classes [SFCT11, p.
3].
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synthetic (train & test)
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3.3 Pose Estimation from Depth Images

3.3.1.1 Depth Image Features

In the following paragraphs the variables k, [ and m represent vectors, whereas =z,
y and z represent scalar coordinates. Scalar variables marked with a hat represent
coordinates in the camera coordinate system (the coordinate system of the Kinect
sensor), scalar variables without a hat represent coordinates within the image co-
ordinate system.

The depth image features are easy to understand and can be computed very effi-
ciently. For the following algorithm a set of features is used, originating from the
parameterized meta-feature f. This feature is calculated at a feature extraction
point k, consisting of the coordinates in image I, and has a parameter § = (I, m).
The parameter consists of the two offsets [ and m, each specifying a two-dimensional
offset from pixel £ to two measurement points. The range of [ and m is specified
manually and defines the feature set size. With the parameter 0, the meta-feature
represents a set of many features that is managed by the classifier.

The feature value is calculated as the difference of the depth values at the two
measurement, points as given in the following equation:

fo(I, k) = dr <k+djik>> —d; <k+ d;&)) (3.1)

In this equation, d;(k) is the depth value in image I at position k. The normal-
ization step of dividing [ and m by the depth of the feature extraction point is
necessary to approximate depth invariance for the feature value calculation.

Depth Invariance Approximation To explain how the approximation works, it
is necessary to have a look at the perspective transformation of the point coordi-
nates in the depth image (for a short derivation of the transformation function, see
Section 2.1.1). A point with camera coordinate x is located in the image at

v f (j) , (3.2)

where f is the focal length of the camera and Z the distance of the point to the
camera. The feature measurement point for the depth image has an offset o from
x in the image, so it is read at position (z + 0) in the image. In world coordinates,
this refers to the depth at the point

(Z+0)

(x+o0)=f- P (3.3)

for a specific value 6.
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Chapter 3 Real-time Pose Recognition in Parts from Single Depth Images

The idea behind the feature calculation formula is, that 6 should remain constant in
world-coordinates, so that it captures object specific depth-differences of the object
shape. To keep 0 constant in Equation 3.3, o must be calculated dynamically, as
derived in Equation 3.4:

) — f‘(i';-a)_x:
— f.(x;fo)_f.z
= /3 (3.4)

Since f and 0 are constant, they can be combined in one value that must be divided
by Z, the depth of the feature extraction point. [ and m in Equation 3.1 are
such combined values. This method is just an approximation for depth invariance,
because the real perspective transformation function has some more parameters
than the used approximation in Equation 3.2 and Equation 3.3. The equations
shown here for the z-coordinates are applicable for the y-coordinates accordingly.

(b)

Figure 3.8: Example of the depth feature extraction for two features fy, and fy,
at different extraction points for each feature [SFC*11, p. 4].

Figure 3.8 shows an example of feature extraction points (marked with a yellow x)
and the according measurement points (marked with red circles) for two features
fo, and fy, of the feature set. In the two subfigures, different extraction points are
shown. If a measurement point lies on background or outside of the image, a large
positive constant value is defined as result of the measurement.

fo, is “searching” for big differences in the vertical direction and is of great help
for e.g. classifying pixels in the upper body. This is visible in Figure 3.8, as fy,
has a large positive value in subfigure (a) and not in subfigure (b). fp, in contrast
“searches” for differences in the horizontal direction with a smaller offset and thus
is very useful for the classification of e.g. arm pixels.

All the features of this feature set can be computed very efficiently. For the calcula-
tion, it is necessary to “read out at most 3 [depth] image pixels and perform at most
5 arithmetic operations; and the features can be straightforwardly implemented on
the GPU” [SFC*11, p. 4].

34



3.3 Pose Estimation from Depth Images

3.3.1.2 Classification with Randomized Decision Forests

The initial set of depth features is very big at learning time, therefore for fast
classification just the best suited features must be selected (i.e. to extract only few
at evaluation time). Randomized Decision Trees and Randomized Decision Forests
are used for this task.

The Decision Trees process examples as described in Section 2.3.2.1, with a feature
fo and a threshold 7 for each split node (the attribute “randomized” only refers to
the way they are built). To classify the pixel with index & in image I with one tree,
the distribution P(¢|l, k) is stored in the leaf nodes of the tree.

The Decision Forest consists of many Decision Trees. To get the classification of the
Decision Forest consisting of T Decision Trees, the classification result of each tree
t is obtained, the distribution P;(¢|I, k). The distributions of all trees are averaged
to get the final classification probabilities

N

P(c|I,k) Z (c|1,k). (3.5)

The classification result is determined by choosing the most probable class

argmax P(c|l, k). (3.6)
ceC

Training To train the Decision Trees efficiently with a high amount of training
images, a special training strategy is used to avoid precalculating a large set of
features for every image pixel. In order to reduce the amount of pixels used, “[...]
a random subset of 2000 example pixels from each image is chosen to ensure a
roughly even distribution across body parts” [SFCT11, p. 4]. This set of examples
is Q ={(l,k..)}, k €[1;2000], I, standing for the tth image and k, , representing
the rkth selected pixel in image ¢.

An inductive inducer is used to build the decision trees from the given set of ex-
amples (). A tree is considered to be “empty” at the beginning, and is built with
the following algorithm (compare to [SFCT11, p. 4]):

1. Propose a set of s random splitting candidates S = {¢; = (6;, 1)}, i € [1;5].
The splitting candidate ¢; consists of a feature #; and a threshold 7;. Shotton
et al. do not explain the random choice for the splitting candidates in detail,
but it can be assumed that only the feature 6; is selected randomly and the
threshold 7; is then calculated optimally from the training examples.

2. Partition the set of examples @) into left and right subsets by each ¢;:

Qleft<¢i) = {(]7 k)|f91(j7 k) < Tiy (L k) S Q}
Qright(¢i> = Q\Qleft(¢i> (37)
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3. Compute the ¢ giving the largest gain in information:

¢* = argmax Gain(Q, ¢) (3.8)
o

es
Gain(Q,¢) = Entropy(Q) — 3 |Qside(9)]

7Entr0p}7(Qside(¢))
sidec{left,right} ‘Q|

where the Shannon entropy Entropy(Q) is computed on the normalized his-
togram of body part classes for all (I, k) € Q.

4. If the largest gain G(¢*) is sufficient, and the depth in the tree is below a
maximum, add the split node ¢* to the decision tree. Then recurse for the
left and right subsets Qcs:(¢*) and Qrignt(¢*).

The setup used for classification in the Kinect system consists of 3 trees with a
depth of 20. This selection is determined with several experiments, as described in
Section 3.4.

3.3.2 Joint Position Estimation

Having classified each pixel to one of the body part classes ¢ € C, it is now nec-
essary to estimate the skeleton joint locations of the “joints” head, neck, left /right
shoulder, left/right elbow, left/right hand, left/right hip, left /right knee, left /right
foot. Some of these skeleton joints have a direct corresponding body part class, e.g.
each elbow skeleton joint and the elbow classes, visible in Figure 3.7. The others
can be treated specifically with the proposed method.

To find the skeleton joint positions from the pixel classes, a probability density
function in 3D world space is generated for each skeleton joint class ¢ € C, with C'
being the set of skeleton joint classes. The Mean Shift Algorithm [CM02] is used
to find modes in that distributions.

The density function for joint ¢ is estimated as

(3.9)

In this equation,
e kisa position in 3D world space,
o N is the number of image pixels,
e wj is a pixel weight, and is explained in the next paragraph,
o k; is an image pixel,

e k; is the reprojection of the image pixel k; into 3D world coordinates,
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3.3 Pose Estimation from Depth Images

e b, is the bandwidth variable, learned for each joint class.

P(c|I, k) used to calculate the pixel weight can be aggregated over body part classes
relevant for the same skeleton joint position, e.g. for the four body part classes for
parts of the head (left upper, left lower, right upper, right lower). The weight
component incorporates the pixel depth to ensure that the density estimates are
depth invariant. This gives “[...] a small but significant improvement in joint
prediction accuracy” [SFCT11, p. 5].

The detected modes by the Mean Shift Algorithm lie on the body surface due to
the definition of the density function in Equation 3.9: the Euclidean Norm in the
exponent is always bigger for pixels outside the body surface, and with a negative
exponent this causes lower probability values. Thus, pixels not on the body surface
are never detected as modes by the Mean Shift Algorithm.

Because the modes lie on the body surface but the skeleton joints should be located
at coordinates within the body, each detected mode is pushed back into the scene
by a learned offset ¢. to produce a final joint position proposal. “The bandwidths
b., probability threshold \., and surface-to-interior z offset ¢. are optimized per-
part on a hold-out validation set of 5000 images by grid search. (As an indication,
this resulted in mean bandwidth 0.065m, probability threshold 0.14, and z offset
0.039m)” [SFCT11, p. 5].

The resulting joint position proposals can be passed to a final processing system,
which realizes the last steps in Figure 3.2, fits the skeleton model and tracks the
user over subsequent frames. The pose estimation system is designed to rely on
per-frame information only, to be robust against lost joints and users leaving the
scene. Even with no tracking algorithm employed, the results of the pose estimation
algorithm are changing smoothly over multiple frames [SFCB11].

3.3.3 Data Generation

To avoid overfitting and to provide training examples with the aspired variability
regarding shapes and poses, a mixture of real and synthetic training data is used.
The real training data is acquired by capturing frames with the depth camera and
hand-annotating them afterwards.

To generate artificial data reflecting realistic poses, a database with motion capture
data is created, containing about 500,000 poses in sequences of many activities.
The motion capture data does not contain depth images, just 3D positions of every
joint. In a second step, the motion capture data is retargeted to fifteen 3D human
models, varying in body size and shape. Further random variations are generated
by slightly varying height and weight of the models and also camera pose, camera
noise, clothing and hairstyle. All body parts of the models are textured by hand
once. The ground truth (depth map with body part annotations) is obtained by
rendering the motion capture poses for any model (see Figure 3.7).
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To reduce the motion capture data to the most important poses for training, sim-
ilar poses (e.g. captured during a slow movement) are sampled. In order to do
this, a 'furthest neighbor’ clustering is done, with the maximum euclidean distance
between corresponding body joints as distance measure between poses. For each
cluster, just one representative pose is used. This breaks down the pose training
set to a size of 100,000 poses with a minimum distance of 5cm. The pose database
is refined repeatedly to fill the “gaps” in the pose space that seem to be underrep-
resented after classifier training.

3.4 Results

3.4.1 Evaluation

In [SFC*11], the system is evaluated in many experiments with different datasets. It
is compared with the former best-performing method by Ganapathi et al. [GPKT10]
on their test dataset taken with a time-of-flight camera. A significant precision im-
provement is shown, with a runtime improvement of a factor greater than ten (see
Figure 3.9). This could be achieved even though the test data is taken with a
camera with different properties and no use of tracking information, in contrast to

[GPKT10].
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Figure 3.9: Comparison of the approaches [SFCT11] and [GPKT10], [SFC*11,
p. 8]. “Our result (per frame)” refers to the approach by Shotton et al. [SFCT11].

An important part of the discussion in [SFCT11] deals with the paid loss of precision
due to the pixel classification step before the joint detection. Figure 3.10 shows
the resulting precision of the joint proposal on ground truth 3D images and on au-
tomatically analyzed images with the Decision Forest. The mean average precision
difference is approximately 18%. However, the authors highlight the need of using
body parts for the HPE task, by showing that a whole-body classification approach
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using nearest-neighbor algorithms needs a much higher amount of training images
to reach comparable accuracy, while needing more processing time and working on
a restricted, easier classification task during this test [SFCT11, p. 7].
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Figure 3.10: Joint prediction accuracy from pixel labels and ground truth labels
[SFC*11, p. 7].

Figure 3.11 shows three charts about the impact of variation in training parameters
on classification accuracy. The trends in all three graphics for synthetic and real
test sets are highly correlated. This speaks for a successful synthetization of data.
The real test set even seems to be ’easier’ than the synthetic one. This can be
explained with the additional added variability in the synthetic data.
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Figure 3.11: Training parameters vs. classification accuracy [SFCT11, p. 6].

Figure 3.11a shows the average per-class accuracy per number of training images
on a log scale. The accuracy continually improves, but the improvement slows down
at approximately 100,000 training images. The authors of [SFCT11] suspect this
to be caused by the limited model capacity of the used 3 tree Decision Forest with
a tree depth of 20.

In the same figure, there is also the precision given for the classification of silhouette
images. For these images, just the difference of the flag between person and back-
ground is available. The curve with “(scale)” was generated allowing the features to
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scale with the depth of the feature extraction point as explained in Section 3.3.1.1,
with the average depth of the silhouette as extraction point depth. The experi-
ment for the curve with “(no scale)” was conducted without allowing this. “For
the corresponding joint prediction using a 2D metric with a 10 pixel true positive
threshold, we got 0.539 mAP [mean average precision] with scale and 0.465 mAP
without. While clearly a harder task due to depth ambiguity, these results suggest
the applicability of our approach to other imaging modalities” [SFC*11, p. 6].

Figure 3.11b shows the accuracy of the joint localizations per depth of the trees of
the pixel classifier and two training set sizes. Until a depth of ten, the improvement
on both test sets is high, independent of the training set size. This suggests an
efficient training strategy.

At higher depths of trees, the curves for the 15,000 image sized training set starts
to tail off, with overfitting being observed for depths 17 or higher. Overfitting does
not occur for the training set with 900,000 images until a tree depth of 20, but
the improvement rate starts to decrease for the depths at about 20. “Of all the
training parameters, the depth appears to have the most significant effect as it
directly impacts the model capacity of the classifier” [SFCT11, p. 6].

3.4.2 Discussion

The presented approach proves that Human Pose Estimation can be solved reliably
in super real-time in a highly variable scenario by using depth information.

The use of a large parameterized feature set based on a simple meta-feature en-
ables the assembly of a capable classifier by using a Decision Forest to manage the
features. The power of the simple features lies in their multitude and variety, and
the ability of the Decision Trees to choose the important features for classification.

The results show clearly the increasing need for example images with increasing
model learning capability of the classifier. The great complexity of the Human Pose
Estimation task requires a high learning capability and thus many examples. The
synthetization of additional training and test data with depth images can provide
the necessary amount of images. Unfortunately, this great possibility cannot be
straightforward extended to color images, since no model exists to capture the high
variability in this scenario. To do so, an image representation not based on single
pixels must be found, so that it does not get “confused” by local color anomalies.
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4 Multiple Pose Context Trees for
estimating Human Pose in Object
Context

An object interaction is defined by Singh et al. as an activity for which a visible
object is approached with a body part, usually a limb. Examples are playing soccer
or basketball, with the soccer ball or the basket ball as interaction objects. Singh
et al. show in their work “Multiple Pose Context Trees for estimating Human Pose
in Object Context” [SKN10] how such interactions can be modeled and detected
in 2D color images. The detection involves pose estimation of the interacting per-
son, object detection and recognition of the interaction. Singh et al. show that
pose estimation can be improved by taking into account the additional contextual
information of the interaction models.

4.1 Motivation and Concept

Human Pose Estimation can largely benefit from incorporating interactions with a
visible object in the pose estimation process. When an interaction object is detected
in an image, it gives a clue that e.g. an interacting limb could be nearby. When
a HPE system must decide between multiple hypotheses for the position of that
limb it can make use of this clue to make the right selection. However, to do this,
the system must have detectors for all possible interaction objects and models of
all interactions, telling it which body part interacts with which object.

Singh et al. propose for this purpose a new graphical model: Pose Context Trees
(PCTs). For each known interaction type, the information about interaction and
pose is encoded in one Pose Context Tree.

A Bayesian framework is used to infer “[...] the optimal pose-object pair by maxi-
mizing the likelihood over multiple Pose Context Trees for all interactions® [SKN10,
p. 1]. The proposed method can deal with unknown interactions by falling back
to a standard pose estimation method. For an example on how knowledge about
object interaction can improve pose estimation, see Figure 4.1.

In the following section, the concept of Pose Context Trees is explained. They are
used to create a model for each object interaction. Section 4.3 explains how the
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Figure 4.1: Example series of images showing the benefit for pose estimation
from knowledge about interaction context [SKN10, p. 1]. Top row: images
of a soccer player, bottom row: images of a basketball player. (a) and (d)
are the original images, (b) and (e) show the result of pose estimation without
including information on the interaction object. (c¢) and (f) show the result of
pose estimation using the proposed approach, including the interaction object in
the model matching process. A significant improvement of the estimated pose is
achieved.

trees are used for matching and how the interaction can be inferred. The chapter
closes with an evaluation and discussion of the approach in Section 4.4.

4.2 Pose Context Trees

The Pose Context Trees introduced by Singh et al. capture information about
possible poses and the interaction with the interaction object. The basic modeling
steps are the same as for Pictorial Structure Models. An introduction to Pictorial
Structure Models can be found in Section 2.3.4.

4.2.1 The Body Model

Singh et al. model the human body with the PSM introduced in Section 2.3.4.5.
The only difference is that they do not include the scale of detected body parts
into the inference process. Due to the high similarity to the model described in
Section 2.3.4.5, variables and terms are only briefly introduced in this section. For
more details and a derivation of the matching framework, see Section 2.3.4.

The human body is modeled as a combination of ten body parts of interest (see
Figure 2.10). It has a tree structure with the torso as root node and the head and
the four limbs as branches.
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Formally, the model (V| FE) consists of vertices V' and edges E. FEach node in
the model is denoted as shown in Figure 2.10 and connected to an observation
node. The observation nodes represent the observed values for the configuration of
each body part, with an entire body configuration denoted by L = {l;} , ;. The
difference to the model in Section 2.3.4.5 is that a body part configuration is given
by l; = (x;,y:,0;), consisting only of the location and rotation of the body part.

The model parameters © = (u, E,c) consist of the appearance parameters u =
{uy, ..., u,}, the set of edges E and the connection parameters c. In this approach,
the set of edges E is regarded as given (as shown in Figure 2.10) and is not learned
from training data, thus it can be disregarded in the following explanations. The
edges contain the connection parameters ¢ = {c¢;;|(v;, v;) € E}.

With these declarations, the statistical framework for the body model is formulated
as explained in Section 2.3.4:

P(L|I,0) o« P(I|L,0)- P(L|©)
= I PUlw)- [ P lley), (4.1)

v; eV (viwj)eE

Appearance terms Prior terms

with the body part appearance terms P (I|l;, u;) and the prior terms P (;, (;|c;;) for
each connection. The values of the appearance terms are determined by using the
body part detectors described in Section 4.3.3; the appearance parameters contain
the configurations for these detectors.

The prior terms are not fully defined by Singh et al. To be able to use the efficient
matching algorithms described in [FH05, Ram07], Singh et al. assume that they
are estimated by a connection function in a specific form. This form is a Diago