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Computer vision is hard because of a large variability in lighting, shape, and texture; in addition the
image signal is non-additive due to occlusion. Generative models promised to account for this variability
by accurately modelling the image formation process as a function of latent variables with prior beliefs.
Bayesian posterior inference could then, in principle, explain the observation. While intuitively appealing,
generative models for computer vision have largely failed to deliver on that promise due to the difficulty
of posterior inference. As a result the community has favoured efficient discriminative approaches. We
still believe in the usefulness of generative models in computer vision, but argue that we need to leverage
existing discriminative or even heuristic computer vision methods. We implement this idea in a prin-
cipled way with an informed sampler and in careful experiments demonstrate it on challenging generative
models which contain renderer programs as their components. We concentrate on the problem of invert-
ing an existing graphics rendering engine, an approach that can be understood as ‘‘Inverse Graphics’’. The
informed sampler, using simple discriminative proposals based on existing computer vision technology,
achieves significant improvements of inference.

� 2015 Elsevier Inc. All rights reserved.
1. Introduction

A conceptually elegant view on computer vision is to consider a
generative model of the physical image formation process. The
observed image becomes a function of unobserved variables of
interest (for example presence and positions of objects) and nui-
sance variables (for example light sources, shadows). When building
such a generative model, we can think of a scene description h that
produces an image I ¼ GðhÞ using a deterministic rendering engine
G, or more generally, results in a distribution over images, pðIjhÞ.
Given an image observation bI and a prior over scenes pðhÞ we can

then perform Bayesian inference to obtain updated beliefs pðhjbIÞ.
This view was advocated since the late 1970s [24,22,45,33,31,44].

Now, 30 years later, we would argue that the generative
approach has largely failed to deliver on its promise. The few suc-
cesses of the idea have been in limited settings. In the successful
examples, either the generative model was restricted to few
high-level latent variables, e.g. [36], or restricted to a set of image
transformations in a fixed reference frame, e.g. [6], or it modelled
only a limited aspect such as object shape masks [16], or, in the
worst case, the generative model was merely used to generate
training data for a discriminative model [39]. With all its intuitive
appeal, its beauty and simplicity, it is fair to say that the track
record of generative models in computer vision is poor. As a result,
the field of computer vision is now dominated by efficient but
data-hungry discriminative models, the use of empirical risk
minimization for learning, and energy minimization on heuristic
objective functions for inference.

Why did generative models not succeed? There are two key
problems that need to be addressed, the design of an accurate
generative model, and the inference therein. Modern computer
graphic systems that leverage dedicated hardware setups produce
a stunning level of realism with high frame rates. We believe that
these systems will find its way in the design of generative models
and will open up exciting modelling opportunities. This observa-
tion motivates the research question of this paper, the design of
a general inference technique for efficient posterior inference in
accurate computer graphics systems. As such it can be understood
as an instance of Inverse Graphics [5], illustrated in Fig. 1 with one
of our applications.

The key problem in the generative world view is the difficulty of
posterior inference at test-time. This difficulty stems from a num-
ber of reasons: first, the parameter h is typically high-dimensional
and so is the posterior. Second, given h, the image formation process
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Fig. 1. An example ‘‘inverse graphics’’ problem. A graphics engine renders a 3D body mesh and a depth image using an artificial camera. By Inverse Graphics we refer to the
process of estimating the posterior probability over possible bodies given the depth image.
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realizes complex and dynamic dependency structures, for example
when objects occlude or self-occlude each other. These intrinsic
ambiguities result in multi-modal posterior distributions. Third,
while most renderers are real-time, each simulation of the forward
process is expensive and prevents exhaustive enumeration.

We believe in the usefulness of generative models for computer
vision tasks, but argue that in order to overcome the substantial
inference challenges we have to devise techniques that are general
and allow reuse in several different models and novel scenarios. On
the other hand we want to maintain correctness in terms of the
probabilistic estimates that they produce. One way to improve
on inference efficiency is to leverage existing computer vision fea-
tures and discriminative models in order to aid inference in the
generative model. In this paper, we propose the informed sampler,
a Markov Chain Monte Carlo (MCMC) method with discriminative
proposal distributions. It can be understood as an instance of a
data-driven MCMC method [46], and our aim is to design a method
that is general enough such that it can be applied across different
problems and is not tailored to a particular application.

During sampling, the informed sampler leverages computer
vision features and algorithms to make informed proposals for
the state of latent variables and these proposals are accepted or
rejected based on the generative model. The informed sampler is
simple and easy to implement, but it enables inference in genera-
tive models that were out of reach for current uninformed
samplers. We demonstrate this claim on challenging models that
incorporate rendering engines, object occlusion, ill-posedness,
and multi-modality. We carefully assess convergence statistics
for the samplers to investigate their truthfulness about the proba-
bilistic estimates. In our experiments we use existing computer
vision technology: our informed sampler uses standard his-
togram-of-gradients features (HoG) [12], and the OpenCV library,
[7], to produce informed proposals. Likewise one of our models is
an existing computer vision model, the BlendSCAPE model, a para-
metric model of human bodies [23].

In Section 2, we discuss related work and explain our informed
sampler approach in Section 3. Section 4 presents baseline meth-
ods and experimental setup. Then we present experimental analy-
sis of informed sampler with three diverse problems of estimating
camera extrinsics (Section 5), occlusion reasoning (Section 6) and
estimating body shape (Section 7). We conclude with a discussion
of future work in Section 8.

2. Related work

This work stands at the intersection of computer vision, com-
puter graphics, and machine learning; it builds on previous
approaches we will discuss below.
There is a vast literature on approaches to solve computer
vision applications by means of generative models. We mention
some works that also use an accurate graphics process as genera-
tive model. This includes applications such as indoor scene under-
standing [15], human pose estimation [29], and hand pose
estimation [14]. Most of these works are however interested in
inferring MAP solutions, rather than the full posterior distribution.

Our method is similar in spirit to Data Driven Markov Chain
Monte Carlo (DDMCMC) methods that use a bottom-up approach
to help convergence of MCMC sampling. DDMCMC methods have
been used in image segmentation [43], object recognition [46],
and human pose estimation [29]. The idea of making Markov sam-
plers data dependent is very general, but in the works mentioned
above, lead to highly problem specific implementations, mostly
using approximate likelihood functions. It is due to specialization
on a problem domain, that the proposed samplers are not easily
transferable to new problems. This is what we focus on in our
work: to provide a simple, yet efficient and general inference tech-
nique for problems where an accurate forward process exists.
Because our method is general we believe that it is easy to adapt
to a variety of new models and tasks.

The idea to invert graphics [5] in order to understand scenes
also has roots in the computer graphics community under the term
‘‘inverse rendering’’. The goal of inverse rendering however is to
derive a direct mathematical model for the forward light transport
process and then to analytically invert it. The work of [37] falls in
this category. The authors formulate the light reflection problem as
a convolution, to then understand the inverse light transport prob-
lem as a deconvolution. While this is a very elegant way to pose the
problem, it does require a specification of the inverse process, a
requirement generative modelling approaches try to circumvent.

Our approach can also be viewed as an instance of a probabilis-
tic programming approach. In the recent work of [31], the authors
combine graphics modules in a probabilistic programming lan-
guage to formulate an approximate Bayesian computation.
Inference is then implemented using Metropolis–Hastings (MH)
sampling. This approach is appealing in its generality and elegance,
however we show that for our graphics problems, a plain MH sam-
pling approach is not sufficient to achieve reliable inference and
that our proposed informed sampler can achieve robust conver-
gence in these challenging models. Another piece of work from
[41] is similar to our proposed inference method in that knowledge
about the forward process is learned as ‘‘stochastic inverses’’, then
applied for MCMC sampling in a Bayesian network. In the present
work, we devise an MCMC sampler that we show works in both a
multi-modal problem as well as for inverting an existing piece of
image rendering code. In summary, our method can be understood
in a similar context as the above-mentioned papers, including [31].
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3. The informed sampler

In general, inference about the posterior distribution is chal-

lenging because for a complex model pðbIjhÞ no closed-form simpli-
fications can be made. This is especially true in the case that we

consider, where pðbIjhÞ corresponds to a graphics engine rendering
images. Despite this apparent complexity we observe the follow-
ing: for many computer vision applications there exist well per-
forming discriminative approaches, that, given the image, predict
some parameters h or distributions thereof. These do not corre-
spond to the posterior distribution that we are interested in, but,
intuitively the availability of discriminative inference methods

should make the task of inferring pðhjbIÞ easier. Furthermore a physi-
cally accurate generative model can be used in an offline stage
prior to inference to generate as many samples as we would like
or can afford computationally. Again, intuitively this should allow
us to prepare and summarize useful information about the dis-
tribution in order to accelerate test-time inference.

Concretely, in our case we will use a discriminative method to

provide a global density TGðbIÞ, which we then use in a valid
MCMC inference method. In the remainder of the section we first
review Metropolis–Hastings Markov Chain Monte Carlo (MCMC)
and then discuss our proposed informed samplers.

3.1. Metropolis–Hastings MCMC

The goal of any sampler is to realize independent and identically
distributed samples from a given probability distribution. MCMC
sampling, due to [32] is a particular instance that generates a
sequence of random variables by simulating a Markov chain.
Sampling from a target distribution pð�Þ consists of repeating the
following two steps [30]:

1. Propose a transition using a proposal distribution T and the
current state ht
�h � Tð�jhtÞ
2. Accept or reject the transition based on Metropolis Hastings
(MH) acceptance rule:
htþ1 ¼
�h; randð0;1Þ < min 1; pð�hÞTð�h!htÞ

pðhtÞTðht!�hÞ

� �
;

ht; otherwise:

(

Different MCMC techniques mainly differ in the imple-
mentation of the proposal distribution T.

3.2. Informed proposal distribution

We use a common mixture kernel for Metropolis–Hastings
sampling

Tað�jbI; htÞ ¼ aTLð�jhtÞ þ ð1� aÞTGð�jbIÞ: ð1Þ

Here TL is an ordinary local proposal distribution, for example a
multivariate Normal distribution centered around the current sam-
ple h, and TG is a global proposal distribution independent of the
current state. We inject knowledge by conditioning the global pro-
posal distribution TG on the image observation. We learn the

informed proposal TGð�ĵIÞ discriminatively in an offline training
stage using a non-parametric density estimator described below.

The mixture parameter a 2 ½0;1� controls the contribution of
each proposal, for a ¼ 1 we recover MH. For a ¼ 0 the proposal

Ta would be identical to TGð�ĵIÞ and the resulting Metropolis sam-
pler would be a valid metropolized independence sampler [30].
With a ¼ 0 we call this baseline method Informed Independent
MH (INF-INDMH). For intermediate values, a 2 ð0;1Þ, we combine
local with global moves in a valid Markov chain. We call this
method Informed Metropolis Hastings (INF-MH).

3.3. Discriminatively learning TG

The key step in the construction of TG is to include discrim-

inative information about the sample bI . Ideally we would hope to
have TG propose global moves which improve mixing and even
allow mixing between multiple modes, whereas the local proposal
TL is responsible for exploring the density locally. To see that this is
in principle possible, consider the case of a perfect global proposal,

that is, TGð�jbIÞ ¼ phð�jbIÞ. In that case we would get independent
samples with a ¼ 0 because every proposal is accepted. In practice

TG is only an approximation to phð�jbIÞ. If the approximation is good
enough then the mixture of local and global proposals will have a
high acceptance rate and explore the density rapidly.

In principle we can use any conditional density estimation tech-
nique for learning a proposal TG from samples. Typically high-
dimensional density estimation is difficult and even more so in
the conditional case; however, in our case we do have the true
generating process available to provide example pairs ðh; IÞ.
Therefore we use a simple but scalable non-parametric density
estimation method based on clustering a feature representation

of the observed image, vðbIÞ 2 Rd. For each cluster we then estimate
an unconditional density over h using kernel density estimation
(KDE). We chose this simple setup since it can easily be reused in
many different scenarios, in the experiments we solve diverse
problems using the same method. This method yields a valid tran-
sition kernel for which detailed balance holds.

In addition to the KDE estimate for the global transition kernel
we also experimented with a random forest approach that maps
the observations to transition kernels TG. More details will be given
in Section 7.

Algorithm 1. Learning a global proposal TGðhjIÞ

1. Simulate fðhðiÞ; IðiÞÞgi¼1;...;n from pðIjhÞpðhÞ
2. Compute a feature representation vðIðiÞÞ
3. Perform k-means clustering of fvðIðiÞÞgi

4. For each cluster Cj � f1; . . . ; ng, fit a kernel

density estimate KDEðCjÞ to the vectors hfCjg
Algorithm 2. INF-MH

Input: observed image bI
TL  Local proposal distribution (Gaussian)

c  cluster for vðbIÞ
TG  KDEðcÞ (as obtained by Algorithm 1)
T ¼ aTL þ ð1� aÞTG

Initialize h1

for t ¼ 1 to N � 1 do
1. Sample �h � Tð�Þ

2. c ¼min 1; pð�hjbIÞTð�h!htÞ
pðht jbIÞTðht!�hÞ

� �
if randð0;1Þ < c then

htþ1 ¼ �h
else

htþ1 ¼ ht

end if
end for
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For the feature representation we leverage successful discrim-
inative features and heuristics developed in the computer vision
community. Different task specific feature representations can be
used in order to provide invariance to small changes in h and to
nuisance parameters. The main inference method remains the
same across problems.

We construct the KDE for each cluster and we use a relatively
small kernel bandwidth in order to accurately represent the high
probability regions in the posterior. This is similar in spirit to using
only high probability regions as ‘‘darts’’ in the Darting Monte Carlo
sampling technique of [40]. We summarize the offline training in
Algorithm 1.

At test time, this method has the advantage that given an imagebI we only need to identify the corresponding cluster once using

vðbIÞ in order to sample efficiently from the kernel density TG. We
show the full procedure in Algorithm 2.

This method yields a transition kernel that is a mixture kernel
of a reversible symmetric Metropolis–Hastings kernel and a
metropolized independence sampler. The combined transition
kernel T is hence also reversible. Because the measure of each
kernel dominates the support of the posterior, the kernel is ergodic
and has the correct stationary distribution [11]. This ensures
correctness of the inference and in the experiments we investigate
the efficiency of the different methods in terms of convergence
statistics.

4. Setup and baseline methods

In the remainder of the paper we demonstrate the proposed
method in three different experimental setups. For all experiments,
we use four parallel chains initialized at different random locations
sampled from the prior. The reported numbers are median statis-
tics over multiple test images except when noted otherwise.

4.1. Baseline methods

4.1.1. Metropolis Hastings (MH)
Described above, corresponds to a ¼ 1, we use a symmetric

diagonal Gaussian distribution, centered at ht .

4.1.2. Metropolis Hastings within Gibbs (MHWG)
We use a Metropolis Hastings scheme in a Gibbs sampler, that

is, we draw from one-dimensional conditional distributions for
proposing moves and the Markov chain is updated along one
dimension at a time. We further use a blocked variant of this
MHWG sampler, where we update blocks of dimensions at a time,
and denote it by BMHWG.

4.1.3. Parallel Tempering (PT)
We use Parallel Tempering to address the problem of sampling

from multi-modal distributions [19,42]. This technique is also
known as ‘‘replica exchange MCMC sampling’’ [25]. We run differ-

ent parallel chains at different temperatures T, sampling pð�Þ
1
T and

at each sampling step propose to exchange two randomly chosen
chains. In our experiments we run three chains at temperature
levels T 2 f1;3;27g that were found to be best working out of all
combinations in f1;3;9;27g for all experiments individually. The
highest temperature levels corresponds to an almost flat
distribution.

4.1.4. Regeneration Sampler (REG-MH)
We implemented a regenerative MCMC method [34] that per-

forms adaption [20] of the proposal distribution during sampling.
We use the mixture kernel (Eq. (1)) as proposal distribution and

adapt only the global part TGð�jbIÞ. This is initialized as the prior over
h and at times of regeneration we fit a KDE to the already drawn
samples. For comparison we used the same mixture coefficient a
as for INF-MH (more details of this technique in Appendix A).

4.2. MCMC diagnostics

We use established methods for monitoring the convergence of
our MCMC method [27,17]. In particular, we report different
diagnostics. We compare the different sampler with respect to
the number of iterations instead of time. The forward graphics
process significantly dominates the runtime and therefore the
iterations in our experiments correspond linearly to the runtime.

4.2.1. Acceptance Rate (AR)
The ratio of accepted samples to the total Markov chain length.

The higher the acceptance rate, the fewer samples we need to
approximate the posterior. Acceptance rate indicates how well
the proposal distribution approximates the true distribution
locally.

4.2.2. Potential Scale Reduction Factor (PSRF)
The PSRF diagnostics [18,10] is derived by comparing within-

chain variances with between-chain variances of sample statistics.
For this, it requires independent runs of multiple chains (4 in our
case) in parallel. Because our sample h is multi-dimensional, we
estimate the PSRF for each parameter dimension separately and
take the maximum PSRF value as final PSRF value. A value close
to one indicates that all chains characterize the same distribution.
This does not imply convergence, the chains may all collectively
miss a mode. However, a PSRF value much larger than one is a cer-
tain sign of lack of convergence of the chain. PSRF also indicates
how well the sampler visits different modes of a multi-modal
distribution.

4.2.3. Root Mean Square Error (RMSE)
During our experiments we have access to the input parameters

h� that generated the image. To assess whether the posterior dis-
tribution covers the ‘‘correct’’ value we report the RMSE between
the posterior expectation E

pð�jbIÞ½Gð�Þ� and the value Gðh�Þ of the

generating input. Since there is noise being added to the observa-
tion we do not have access to the ground truth posterior expecta-
tion and therefore this measure is only an indicator. Under
convergence all samplers would agree on the same correct value.

4.3. Parameter selection

For each sampler we individually selected hyper-parameters
that gave the best PSRF value after 10k iterations. In case the
PSRF does not differ for multiple values, we chose the one with
highest acceptance rate. We include a detailed analysis of the base-
line samplers and parameter selection in the supplementary
material.

5. Experiment: estimating camera extrinsics

We implement the following simple graphics scenario to create
a challenging multi-modal problem. We render a cubical room of
edge length 2 with a point light source in the center of the room
ð0;0;0Þ from the viewpoint of a camera somewhere inside the
room. The camera parameters are described by its ðx; y; zÞ-position
and the orientation, specified by yaw, pitch, and roll angles. The
inference process consists of estimating the posterior over these
6D camera parameters h. See Fig. 2 for two example renderings.
Posterior inference is a highly multi-modal problem because the
room is a cubical and thus symmetric. There are 24 different
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camera parameters that will result in the same image. This is also
shown in Fig. 2 where we plot the position and orientation (but not
camera roll) of all camera parameters that create the same image.
A rendering of a 200� 200 image with a resolution of 32 bit using a
single core on an Intel Xeon 2.66 GHz machine takes about 11 ms
on average.

A small amount of isotropic Gaussian noise is added to the
rendered image GðhÞ, using a standard deviation of r ¼ 0:02. The

posterior distribution we try to infer then reads: pðhjbIÞ / pðbIjhÞ
pðhÞ ¼ N ðbIjGðhÞ;r2Þ UniformðhÞ. The uniform prior over location
parameters ranges between �1.0 and 1.0 and the prior over angle
parameters is modelled with wrapped uniform distribution over
½�p;p�.

To learn the informed part of the proposal distribution from
data, we computed a histogram of oriented gradients (HOG)
descriptor [12] from the image, using 9 gradient orientations and
cells of size 20� 20 yielding a feature vector vðIÞ 2 R900. We gener-
ated 300k training images using a uniform prior over the camera
extrinsic parameters, and performed k-means using 5k cluster cen-
ters based on the HOG feature vector. For each cluster cell, we then
computed and stored a KDE for the 6 dimensional camera parame-
ters, following the steps in Algorithm 1. As test data, we create 30
images using extrinsic parameters sampled uniform at random
over their range.

5.1. Results

We show results in Fig. 3. We observe that both MH and PT
yield low acceptance rate compared to other methods. However
parallel tempering appears to overcome the multi-modality better
and improves over MH in terms of convergence. The same holds for
the regeneration technique, we observe many regenerations, good
convergence and AR. Both INF-INDMH and INF-MH converge
quickly.

In this experimental setup have access to the different exact
modes, there are 24 different ones. We analyze how quickly the
samplers visit the modes and whether or not they capture all of
them. For every different instance the pairwise distances between
the modes changes, therefore we chose to define ‘‘visiting a mode’’
in the following way. We compute a Voronoi tesselation with the
modes as centers. A mode is visited if a sample falls into its
corresponding Voronoi cell, that is, it is closer than to any other
mode. Sampling uniform at random would quickly find the modes
(depending on the cell sizes) but is not a valid sampler. We also
Fig. 2. Two rendered room images with possible camera positions and headings that p
headings can be rolled by 90�, 180�, and 270� for the same image.
experimented with balls of different radii around the modes and
found a similar behavior to the one we report here. Fig. 3 (right)
shows results for various samplers. We find that INF-MH discovers
different modes quicker when compared to other baseline sam-
plers. Just sampling from the global proposal distribution INF-
INDMH is initially visiting more modes (it is not being held back
by local steps) but is dominated by INF-MH over some range.
This indicates that the mixture kernel takes advantage of both local
and global moves, either one of them is exploring slower. Also in
most examples all samplers miss some modes under our definition,
the average number of discovered modes is 21 for INF-MH and
even lower for MH.

Fig. 4 shows the effect of mixture coefficient (a) on the informed
sampling INF-MH. Since there is no significant difference in PSRF
values for 0 6 a 6 0:7, we chose 0:7 due to its high acceptance rate.
Likewise, the parameters of the baseline samplers are chosen based
on the PSRF and acceptance rate metrics. See supplementary mate-
rial for the analysis of the baseline samplers and the parameter
selection.

We also tested the MHWG sampler and found that it did not
converge even after 100k iterations, with a PSRF value around 3.
This is to be expected since single variable updates will not tra-
verse the multi-modal posterior distributions fast enough due to
the high correlation of the camera parameters. In Fig. 5 we plot
the median auto-correlation of samples obtained by different sam-
pling techniques, separately for each of the six extrinsic camera
parameters. The informed sampling approach (INF-MH and INF-
INDMH) appears to produce samples which are more independent
compared to other baseline samplers.

As expected, some knowledge of the multi-modal structure of
the posterior needs to be available for the sampler to perform well.
The methods INF-INDMH and INF-MH have this information and
perform better than baseline methods and REG-MH.
6. Experiment: occluding tiles

In a second experiment we render images depicting a fixed
number of six quadratic tiles placed at a random location x; y in
the image at a random depth z and orientation h. We blur the
image and add a bit of Gaussian random noise (r ¼ 0:02). An
example is depicted in Fig. 6(a), note that all the tiles are of the
same size, but farther away tiles look smaller. A rendering of one
200� 200 image takes about 25 ms on average. Here, as prior,
we again use the uniform distribution over the 3D cube for tile
roduce the same image. Not shown are the orientations; in the left example all six



Fig. 3. Results of the ‘Estimating Camera Extrinsics’ experiment. Acceptance rates (left), PSRFs (middle), and average number of modes visited (right) for different sampling
methods. We plot the median/average statistics over 30 test examples.

Fig. 4. Role of mixture coefficient. PRSFs and acceptance rates corresponding to various mixture coefficients (a) of INF-MH sampling in ‘Estimating Camera Extrinsics’
experiment.

Fig. 5. Auto-correlation of samples obtained by different sampling techniques in camera extrinsics experiment, for each of the six extrinsic camera parameters.
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location parameters, and wrapped uniform distribution over
� p

4 ;
p
4

� �
for tile orientation angle. To avoid label switching issues,

each tile is given a fixed color and is not changed during the
inference.

We chose this experiment such that it resembles the ‘‘dead
leaves model’’ of [28], because it has properties that are common-
place in computer vision. It is a scene composed of several objects
that are independent, except for occlusion, which complicates the
problem. If occlusion did not exist, the task is readily solved using a
standard OpenCV [7] rectangle finding algorithm (minAreaRect).
The output of such an algorithm can be seen in Fig. 6(c), and we
use this algorithm as a discriminative source of information. This
problem is higher dimensional than the previous one (24, due to
6 tiles of 4 parameters). Inference becomes more challenging in
higher dimension and our approach without modification does
not scale well with increasing dimensionality. One way to
approach this problem, is to factorize the joint distribution into
blocks and learn informed proposals separately. In the present
experiment, we observed that both baseline samplers and the plain
informed sampling fail when proposing all parameters jointly.
Since the tiles are independent except for the occlusion, we can
approximate the full joint distribution as product of block
distributions where each block corresponds to the parameters of
a single tile. To estimate the full posterior distribution, we learn
global proposal distributions for each block separately and use a
block-Gibbs like scheme in our sampler where we propose changes
to one tile at a time, alternating between tiles.

The experimental protocol is the same as before, we render
500k images, apply the OpenCV algorithm to fit rectangles and take
their found four parameters as features for clustering (10k clus-
ters). Again KDE distributions are fit to each cluster and at test
time, we assign the observed image to its corresponding cluster.
The KDE in that chosen cluster determines the global sampler TG

for that tile. We then use TG to propose an update to all 4 parame-
ters of the tile. We refer to this procedure as INF-BMHWG.
Empirically we find a ¼ 0:8 to be optimal for INF-BMHWG
sampling.

6.1. Results

An example result is shown in Fig. 6. We found that the MH and
INF-MH samplers fail entirely on this problem. Both use a proposal
distribution for the entire state and due to the high dimensions
there is almost no acceptance (<1%) and thus they do not reach
convergence. The MHWG sampler, updating one dimension at a
time, is found to be the best among the baseline samplers with
acceptance rate of around 42%, followed by a block sampler that
samples each tile separately. The OpenCV algorithm produces a
reasonable initial guess but fails in occlusion cases.

The block wise informed sampler INF-BMHWG converges
quicker, with higher acceptance rates (	 53%), and lower recon-
struction error. The median curves for 10 test examples are shown
in Fig. 7, INF-BMHWG by far produces lower reconstruction errors.
Fig. 6. A visual result in ‘Occluding Tiles’ experiment. (a) A sample rendered image, (b) gr
MHWG sampler (best baseline) and (d) the INF-BMHWG sampler. (f) Posterior expecta
samples are discarded as burn-in.)
Also in Fig. 6(f) the posterior distribution is visualized, fully visible
tiles are more localized, position and orientation of occluded tiles
more uncertain. Fig. B.2 in the appendix shows some more visual
results. Although the model is relatively simple, all the baseline
samplers perform poorly and discriminative information is crucial
to enable accurate inference. Here the discriminative information
is provided by a readily available heuristic in the OpenCV library.

This experiment illustrates a variation of the informed sampling
strategy that can be applied to sampling from high-dimensional
distributions. Inference methods for general high-dimensional dis-
tributions is an active area of research and intrinsically difficult.
The occluding tiles experiment is simple but illustrates this point,
namely that all non-block baseline samplers fail. Block sampling is
a common strategy in such scenarios and many computer vision
problems have such block-structure. Again the informed sampler
improves in convergence speed over the baseline method. Other
techniques that produce better fits to the conditional (block-)-
marginals should give faster convergence.

7. Experiment: estimating body shape

The last experiment is motivated by a real world problem:
estimating the 3D body shape of a person from a single static depth
image. With the recent availability of cheap active depth sensors,
the use of RGBD data has become ubiquitous in computer vision
[38,26].

To represent a human body we use the BlendSCAPE model [23],
which updates the originally proposed SCAPE model [2] with bet-
ter training and blend weights. This model produces a 3D mesh of a
human body as shown in Fig. 8 as a function of shape and pose
parameters. The shape parameters allow us to represent bodies
of many builds and sizes, and includes a statistical characterization
(being roughly Gaussian). These parameters control directions in
deformation space, which were learned from a corpus of roughly
2000 3D mesh models registered to scans of human bodies via
PCA. The pose parameters are joint angles which indirectly control
local orientations of predefined parts of the model.

Our model uses 57 pose parameters and any number of shape
parameters to produce a 3D mesh with 10,777 vertices. We use
the first 7 SCAPE components to represent the shape of a person.
The camera viewpoint, orientation, and pose of the person is held
fixed. Thus a rendering process takes h 2 R7, generates a 3D mesh
representation of it and projects it through a virtual depth camera
to create a depth image of the person. This can be done in various
resolutions, we chose 430� 260 with depth values represented as
32 bit numbers in the interval ½0;4�. On average, a full render path
takes about 28 ms. We add Gaussian noise with standard deviation
of 0:02 to the created depth image. See Fig. 8(left) for an example.

We used very simple low level features for feature representa-
tion. In order to learn the global proposal distribution we compute
depth histogram features on a 15� 10 grid on the image. For each
cell we record the mean and variance of the depth values.
Additionally we add the height and the width of the body
ound truth squares, and most probable estimates from 5000 samples obtained by (c)
tion of the square boundaries obtained by INF-BMHWG sampling. (The first 2000



Fig. 7. Results of the ‘Occluding Tiles’ experiment. Acceptance rates (left), PSRFs (middle), and RMSEs (right) for different sampling methods. Median results for 10 test
examples.

Fig. 8. Inference of body shape from a depth image. A sample test result showing the result of 3D mesh reconstruction with the first 1000 samples obtained using our INF-MH
sampling method. We visualize the angular error (in degrees) between the estimated and ground truth edge and project onto the mesh.
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silhouette as features resulting in a feature vector vðIÞ 2 R302. As
normalization, each feature dimension is divided by the maximum
value in the training set. We used 400k training images sampled
from the standard normal prior distribution and 10k clusters to
learn the KDE proposal distributions in each cluster cell.

For this experiment we also experimented with a different
conditional density estimation approach using a forest of random
regression trees [9,8]. In the previous experiments, utilizing the
KDE estimates, the discriminative information entered through
the feature representation. Then, suppose if there was no relation
between some observed features and the variables that we are
trying to infer, we would require a large number of samples to
reliably estimate the densities in the different clusters. The
regression forest can adaptively partition the parameter space
based on observed features and is able to ignore uninformative
features, thus may lead to better fits of the conditional densities.
It can thus be understood as the adaptive version of the k-means
clustering technique that solely relies on the used metric
(Euclidean in our case).

In particular, we use the same features as for k-means cluster-
ing but grow the regression trees using a mean square error criter-
ion for scoring the split functions. A forest of 10 binary trees with a
depth of 15 is grown, with the constraint of having a minimum of
40 training points per leaf node. Then for each of the leaf nodes, a
KDE is trained as before. At test time the regression forest yields a
mixture of KDEs as the global proposal distribution. We denote this
method as INF-RFMH in the experiments.

Instead of placing using one KDE model for each cluster, we
could also explore a regression approach, for example using a
discriminative linear regression model to map observations into
proposal distributions. By using informative covariates in the
regression model one should be able to overcome the curse of
dimensionality. Such a semi-parametric approach would allow to
capture explicit parametric dependencies of the variables (for
example linear dependencies) and combine them with non-
parametric estimates of the residuals. We are exploring this
technique as future work.

Again, we chose parameters for all samplers individually, based
on empirical mixing rates. For informed samplers, we chose
a ¼ 0:8, and a local proposal standard deviation of 0.05. The full
analysis for all samplers is included in the supplementary material.

7.1. Results

We tested the different approaches on 10 test images that are
generated by parameters drawn from the standard normal prior
distribution. Fig. 9 summarizes the results of the sampling meth-
ods. We make the following observations. The baselines methods
MH, MHWG, and PT show inferior convergence results and MH
and PT also suffer from lower acceptance rates. Just sampling from
the distribution of the discriminative step (INF-INDMH) is not
enough, because the low acceptance rate indicates that the global
proposals do not represent the correct posterior distribution.
However, combined with a local proposal in a mixture kernel, we
achieve a higher acceptance rate, faster convergence and a
decrease in RMSE. The regression forest approach has slower con-
vergence than INF-MH. In this example, the regeneration sampler
REG-MH does not improve over simpler baseline methods. We
attribute this to rare regenerations which may be improved with
more specialized methods.



Fig. 9. Results of the ‘Body Shape’ experiment. Acceptance rates (left), PSRFs (middle), and RMSEs (right) for different sampling methods in the body shape experiment.
Median results over 10 test examples.

Fig. 10. Body measurements with quantified uncertainty. Box plots of three body measurements for three test subjects, computed from the first 10k samples obtained by the
INF-MH sampler. Dotted lines indicate measurements corresponding to ground truth SCAPE parameters.

Fig. 11. Inference with incomplete evidence. Mean 3D mesh and corresponding errors and uncertainties (std. deviations) in mesh edge directions, for the same test case as in
Fig. 8, computed from first 10k samples of our INF-MH sampling method with (bottom row) occlusion mask in image evidence (blue indicates small values and red indicates
high values). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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We believe that our simple choice of depth image representation
can also significantly be improved on. For example, features can be
computed from identified body parts, something that the simple
histogram features have not taken into account. In the computer
vision literature some discriminative approaches for pose
estimation do exist, most prominent being the influential work on
pose recovery in parts for the Kinect XBox system [39]. In future
work we plan to use similar methods to deal with pose variation
and complicated dependencies between parameters and
observations.
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7.2. 3D mesh reconstruction

In Fig. 8 we show a sample 3D body mesh reconstruction result
using the INF-MH sampler after only 1000 iterations. We visual-
ized the difference of the mean posterior and the ground truth
3D mesh in terms of mesh edge directions. One can observe that
most differences are in the belly region and the feet of the person.
The retrieved posterior distribution allows us to assess the model
uncertainty. To visualize the posterior variance we record standard
deviation over the edge directions for all mesh edges. This is back-
projected to achieve the visualization in Fig. 8 (right). We see that
posterior variance is higher in regions of higher error, that is, our
model predicts its own uncertainty correctly [13]. In a real-world
body scanning scenario, this information will be beneficial; for
example, when scanning from multiple viewpoints or in an experi-
mental design scenario, it helps in selecting the next best pose and
viewpoint to record. Fig. B.3 shows more 3D mesh reconstruction
results using our sampling approach.

7.3. Body measurements

Predicting body measurements has many applications including
clothing, sizing and ergonomic design. Given pixel observations,
one may wish to infer a distribution over measurements (such as
height and chest circumference). Fortunately, our original shape
training corpus includes a host of 47 different per-subject mea-
surements, obtained by professional anthropometrists; this allows
us to relate shape parameters to measurements. Among many pos-
sible forms of regression, regularized linear regression [47] was
found to best predict measurements from shape parameters. This
linear relationship allows us to transform any posterior
distribution over SCAPE parameters into a posterior over measure-
ments, as shown in Fig. 10. We report for three randomly chosen
subjects’ (S1, S2, and S3) results on three out of the 47 measure-
ments. The dashed lines corresponds to ground truth values. Our
estimate not only faithfully recovers the true value but also yields
a characterization of the full conditional posterior.

7.4. Incomplete evidence

Another advantage of using a generative model is the ability to
reason with missing observations. We perform a simple experi-
ment by occluding a portion of the observed depth image. We
use the same inference and learning codes, with the same
parametrization and features as in the non-occlusion case but
retrain the model to account for the changes in the forward pro-
cess. The result of INF-MH, computed on the first 10k samples is
shown in Fig. 11. The 3D reconstruction is reasonable even under
large occlusion; the error and the edge direction variance did
increase as expected.

8. Discussion and conclusions

This work proposes a method to incorporate discriminative
methods into Bayesian inference in a principled way. We augment
a sampling technique with discriminative information to enable
inference with global accurate generative models. Empirical results
on three challenging and diverse computer vision experiments are
discussed. We carefully analyze the convergence behavior of several
different baselines and find that the informed sampler performs
well across all different scenarios. This sampler is applicable to gen-
eral scenarios and in this work we leverage the accurate forward
process for offline training, a setting frequently found in computer
vision applications. The main focus is the generality of the approach,
this inference technique should be applicable to many different
problems and not be tailored to a particular problem.
We show that even for very simple scenarios, most baseline
samplers perform poorly or fail completely. By including a global
image-conditioned proposal distribution that is informed through
discriminative inference we can improve sampling performance.
We deliberately use a simple learning technique (KDEs on k-means
cluster cells and a forest of regression trees) to enable easy reuse in
other applications. Using stronger and more tailored discriminative
models should lead to better performance. We see this as a way
where top-down inference is combined with bottom-up proposals
in a probabilistic setting.

There are some avenues for future work; we understand this
method as an initial step into the direction of general inference
techniques for accurate generative computer vision models.
Identifying conditional dependence structure should improve
results, e.g. recently [41] used structure in Bayesian networks to
identify such dependencies. One assumption in our work is that
we use an accurate generative model. Relaxing this assumption
to allow for more general scenarios where the generative model
is known only approximately is important future work. In par-
ticular for high-level computer vision problems such as scene or
object understanding there are no accurate generative models
available yet but there is a clear trend towards physically more
accurate 3D representations of the world. This more general
setting is different to the one we consider in this paper, but we
believe that some ideas can be carried over. For example, we
could create the informed proposal distributions from manually
annotated data that is readily available in many computer vision
data sets. Another problem domain are trans-dimensional models,
that require different sampling techniques like reversible jump
MCMC methods [21,11]. We are investigating general techniques
to ‘‘inform’’ this sampler in similar ways as described in this
manuscript.

We believe that generative models are useful in many computer
vision scenarios and that the interplay between computer graphics
and computer vision is a prime candidate for studying probabilistic
inference and probabilistic programming [31]. However, current
inference techniques need to be improved on many fronts: effi-
ciency, ease of usability, and generality. Our method is a step
towards this direction: the informed sampler leverages the power
of existing discriminative and heuristic techniques to enable a
principled Bayesian treatment in rich generative models. Our
emphasis is on generality; we aimed to create a method that can
be easily reused in other scenarios with existing code bases. The
presented results are a successful example of the inversion of an
involved rendering pass. In the future we plan to investigate ways
to combine existing computer vision techniques with principled
generative models, with the aim of being general rather than prob-
lem specific.
Appendix A. Regeneration sampler (REG-MH)

Adapting the proposal distribution with existing MCMC sam-
ples is not straight-forward as this would potentially violate the
Markov property of the chain [3]. One approach is to identify times
of regeneration at which the chain can be restarted and the pro-
posal distribution can be adapted using samples drawn previously.
Several approaches to identify good regeneration times in a general
Markov chain have been proposed [4,35]. We build on [34] that
proposed two splitting methods for finding the regeneration times.
Here, we briefly describe the method that we implemented in this
study.

Let the present state of the sampler be x and let the independent
global proposal distribution be TG. When y � TG is accepted accord-
ing to the MH acceptance rule, the probability of a regeneration is
given by:



Fig. B.2. Qualitative results of the occluding tiles experiment. From left to right: (a) Given image, (b) ground truth tiles, and most probable estimates from 5000 samples
obtained by (c) MHWG sampler (best baseline) and (d) our INF-BMHWG sampler. (f) Posterior expectation of the tiles boundaries obtained by INF-BMHWG sampling. (First
2000 samples are discarded as burn-in.)
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rðx; yÞ ¼

max c
wðxÞ ;

c
wðyÞ

n o
; if wðxÞ > c and wðyÞ > c;

max wðxÞ
c ; wðyÞ

c

n o
; if wðxÞ < c and wðyÞ < c;

1; otherwise;

8>>><>>>: ðA:1Þ
where c > 0 is an arbitrary constant and wðxÞ ¼ pðxÞ
TGðxÞ

. The value of

c can be set to maximize the regeneration probability. At every
sampling step, if a sample from the independent proposal dis-
tribution is accepted, we compute regeneration probability using
Eq. (A.1). If a regeneration occurs, the present sample is dis-
carded and replaced with one from the independent proposal
distribution TG. We use the same mixture proposal distribution
as in our informed sampling approach where we initialize the
global proposal TG with a prior distribution and at times of
regeneration fit a KDE to the existing samples. This becomes
the new adapted distribution TG. Refer to [34] for more details
of this regeneration technique. In the work of [1] this regenera-
tion technique is used with success in a Darting Monte Carlo
sampler.



Fig. B.3. Qualitative results for the body shape experiment. Shown is the 3D mesh reconstruction results with first 1000 samples obtained using the INF-MH informed
sampling method (blue indicates small values and red indicates high values). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Appendix B. Additional qualitative results

B.1. Occluding tiles

In Fig. B.2 more qualitative results of the occluding tiles experi-
ment are shown. The informed sampling approach (INF-BMHWG)
is better than the best baseline (MHWG). This still is a very chal-
lenging problem since the parameters for occluded tiles are flat
over a large region. Some of the posterior variance of the occluded
tiles is already captured by the informed sampler.

B.2. Body shape

Fig. B.3 shows some more results of 3D mesh reconstruction
using posterior samples obtained by our informed sampling
INF-MH.

Appendix C. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cviu.2015.03.002.
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