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1. Additional Results on LSP dataset

We provide additional quantitative results on LSP dataset

using person-centric (PC) and observer-centric (OC) evalua-

tion settings.

1.1. LSP Person­Centric (PC)

First, detailed performance analysis is performed when

evaluating various parameters of AFR-CNN and results are

reported using PCK [13] evaluation measure. Then, per-

formance of the proposed AFR-CNN and Dense-CNN part

detection models is evaluated using strict PCP [4] measure.

Detailed AFR-CNN performance analysis (PCK). De-

tailed parameter analysis of AFR-CNN is provided in Tab. 1

and results are reported using PCK evaluation measure. Re-

specting parameters for each experiment are shown in the

first column and parameter differences between the neigh-

boring rows in the table are highlighted in bold. Re-scoring

the 2000 DPM proposals using AFR-CNN with AlexNet [8]

leads to 56.9% PCK. This is achieved using basis scale 1 (≈

head size) of proposals and training with initial learning rate

(lr) of 0.001 for 80k iterations, after which lr is reduced by

0.1, for a total number of 140k SGD iterations. In addition,

bounding box regression and default IoU threshold of 0.5 for

positive/negative label assignment [5] have been used. Ex-

tending the regions by 4x increases the performance to 65.1%

PCK, as it incorporates more context including the informa-

tion about symmetric body parts and allows to implicitly

encode higher-order body part relations into the part detector.

No improvements observed for larger scales. Increasing lr

to 0.003, lr reduction step to 160k and training for a larger

number of iterations (240k) improves the results to 67.4, as

higher lr allows for for more significant updates of model

parameters when finetuned on the task of human body part

detection. Increasing the number of training examples by

reducing the training IoU threshold to 0.4 results into slight

performance improvement (68.8 vs. 67.4% PCK). Further

increasing the number of training samples by horizontally

flipping each image and performing translation and scale

jittering of the ground truth training samples improves the

performance to 69.6% PCK and 42.3% AUC. The improve-

ment is more pronounced for smaller distance thresholds

(42.3 vs. 40.9% AUC): localization of body parts is im-

proved due to the increased number of jittered samples that

significantly overlap with the ground truth. Further increas-

ing the lr, lr reduction step and total number of iterations

altogether improves the performance to 72.4% PCK, and

very minor improvements are observed when training longer.

All results above are achieved by finetuning the AlexNet

architecture from the ImageNet model on the MPII training

set. Further finetuning the MPII-finetuned model on the LSP

training set increases the performance to 77.9% PCK, as the

network learns LSP-specific image representations. Using

the deeper VGG [14] architecture improves over more shal-

low AlexNet (77.9 vs. 72.4% PCK, 50.0 vs. 44.6% AUC).

Funetuning VGG on LSP achieves remarkable 82.8% PCK

and 57.0% AUC. Strong increase in AUC (57.0 vs. 50%)

characterizes the improvement for smaller PCK evaluation

thresholds. Switching off bounding box regression results

into performance drop (81.3% PCK, 53.2% AUC) thus show-

ing the importance of the bounding box regression for better

part localization. Overall, we demonstrate that proper adap-

tation and tweaking of the state-of-the-art generic object

detector FR-CNN [5] leads to a strong body part detection

model that dramatically improves over the vanilla FR-CNN

(82.8 vs. 56.9% PCK, 57.8 vs. 35.9% AUC) and signifi-

cantly outperforms the state of the art (+9.4% PCK over the

best known PCK result [1] and +9.7% AUC over the best

known AUC result [15].

Overall performance using PCP evaluation measure.
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Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AlexNet scale 1, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 82.2 67.0 49.6 45.4 53.1 52.9 48.2 56.9 35.9

AlexNet scale 4, lr 0.001, lr step 80k, # iter 140k, IoU pos/neg 0.5 85.7 74.4 61.3 53.2 64.1 63.1 53.8 65.1 39.0

AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.5 87.0 75.1 63.0 56.3 67.0 65.7 58.0 67.4 40.8

AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.4 87.5 76.7 64.8 56.0 68.2 68.7 59.6 68.8 40.9

AlexNet scale 4, lr 0.003, lr step 160k, # iter 240k, IoU pos/neg 0.4, data augment 87.8 77.8 66.0 58.1 70.9 66.9 59.8 69.6 42.3

AlexNet scale 4, lr 0.004, lr step 320k, # iter 1M, IoU pos/neg 0.4, data augment 88.1 79.3 68.9 62.6 73.5 69.3 64.7 72.4 44.6

+ finetune LSP, lr 0.0005, lr step 10k, # iter 40k 92.9 81.0 72.1 66.4 80.6 77.6 75.0 77.9 51.6

VGG scale 4, lr 0.003, lr step 160k, # iter 320k, IoU pos/neg 0.4, data augment 91.0 84.2 74.6 67.7 77.4 77.3 72.8 77.9 50.0

+ finetune LSP lr 0.0005, lr step 10k, # iter 40k 95.4 86.5 77.8 74.0 84.5 78.8 82.6 82.8 57.0

Table 1: PCK performance of AFR-CNN (unary) on LSP (PC) dataset. AFR-CNN is finetuned from ImageNet on MPII (lines

1-6, 8), and then finetuned on LSP (lines 7, 9).

Performance when using the strict “Percentage of Correct

Parts (PCP)” [4] measure is reported in Tab. 2. In con-

trast to PCK measure evaluating the accuracy of predicting

body joints, PCP evaluation metric measures the accuracy

of predicting body part sticks. AFR-CNN achieves 78.3%

PCP. Similar to PCK results, DeepCut SP AFR-CNN slightly

improves over unary alone, as it enforces more consistent

predictions of body part sticks. Using more general multi-

person DeepCut MP AFR-CNN model results into similar

performance, which shows the generality of DeepCut MP

method. DeepCut SP Dense-CNN slightly improves over

Dense-CNN alone (84.3 vs. 83.9% PCP) achieving the best

PCP result on LSP dataset using PC annotations. This is

in contrast to PCK results where performance differences

DeepCut SP Dense-CNN vs. Dense-CNN alone are minor.

We now compare the PCP results to the state of the art.

The DeepCut models outperform all other methods by a large

margin. The best known PCP result by Chen&Yuille [1] is

outperformed by 10.7% PCP. This is interesting, as their

deep learning based method relies on the image conditioned

pairwise terms while our approach uses more simple geomet-

ric only connectivity. Interestingly, AFR-CNN alone outper-

forms the approach of Fan et al. [17] (78.3 vs. 70.1% PCP),

who build on the previous version of the R-CNN detector [6].

At the same time, the best performing dense architecture

DeepCut SP Dense-CNN outperforms [17] by +14.2% PCP.

Surprisingly, DeepCut SP Dense-CNN dramatically outper-

forms the method of Tompson et al. [15] (+17.7% PCP) that

also produces dense score maps, but additionally includes

multi-scale receptive fields and jointly trains appearance and

spatial models in a single deep learning framework. We envi-

sion that both advances can further improve the performance

of DeepCut models. Finally, all proposed approaches sig-

nificantly outperform earlier non-deep learning based meth-

ods [16, 11] relying on hand-crafted image features.

1.2. LSP Observer­Centric (OC)

We now evaluate the performance of the proposed part

detection models on LSP dataset using the observer-centric

(OC) annotations [3]. In contrast to the person-centric (PC)

annotations used in all previous experiments, OC annotations

Torso Upper Lower Upper Fore- Head PCP

Leg Leg Arm arm

AFR-CNN (unary) 93.2 82.7 77.7 75.5 63.5 91.2 78.3

+ DeepCut SP 93.3 83.2 77.8 76.3 63.7 91.5 78.7

+ appearance pairwise 93.4 83.5 77.8 76.6 63.8 91.8 78.9

+ DeepCut MP 93.6 83.3 77.6 76.3 63.5 91.2 78.6

Dense-CNN (unary) 96.2 87.8 81.8 81.6 72.3 95.6 83.9

+ DeepCut SP 97.0 88.8 82.0 82.4 71.8 95.8 84.3

+ DeepCut MP 96.4 88.8 80.9 82.4 71.3 94.9 83.8

Tompson et al. [15] 90.3 70.4 61.1 63.0 51.2 83.7 66.6

Chen&Yuille [1] 96.0 77.2 72.2 69.7 58.1 85.6 73.6

Fan et al. [17]∗ 95.4 77.7 69.8 62.8 49.1 86.6 70.1

Pishchulin et al. [11] 88.7 63.6 58.4 46.0 35.2 85.1 58.0

Wang&Li [16] 87.5 56.0 55.8 43.1 32.1 79.1 54.1

∗ re-evaluated using the standard protocol, for details see project page of [17]

Table 2: Pose estimation results (PCP) on LSP (PC) dataset.

do not penalize for the right/left body part prediction flips

and count a body part to be the right body part, if it is on the

right side of the line connecting pelvis and neck, and a body

part to be the left body part otherwise.

Evaluation is performed using the official OC annotations

provided by [10, 3]. Prior to evaluation, we first finetune the

AFR-CNN and Dense-CNN part detection models from Ima-

geNet on MPII and MPII+LSPET training sets, respectively,

(same as for PC evaluation), and then further finetuned the

models on LSP OC training set.

PCK evaluation measure. Results using OC annotations

and PCK evaluation measure are shown in Tab. 3 and in

Fig. 1. AFR-CNN achieves 84.2% PCK and 58.1% AUC.

This result is only slightly better compared to AFR-CNN

evaluated using PC annotations (84.2 vs 82.8% PCK, 58.1

vs. 57.0% AUC). Although PC annotations correspond to

a harder task, only small drop in performance when us-

ing PC annotations shows that the network can learn to

accurately predict person’s viewpoint and correctly label

left/right limbs in most cases. This is contrast to earlier

approaches based on hand-crafted features whose perfor-

mance drops much stronger when evaluated in PC evaluation

setting (e.g. [11] drops from 71.0% PCK when using OC

annotations to 58.0% PCK when using PC annotations). Sim-

ilar to PC case, Dense-CNN detection model outperforms

AFR-CNN (88.2 vs. 84.2% PCK and 65.0 vs. 58.1% AUC).

The differences are more pronounced when examining the



Setting Head Sho Elb Wri Hip Knee Ank PCK AUC

AFR-CNN (unary) 95.3 88.3 78.5 74.2 87.3 84.2 81.2 84.2 58.1

Dense-CNN (unary) 97.4 92.0 83.8 79.0 93.1 88.3 83.7 88.2 65.0

Chen&Yuille [1] 91.5 84.7 70.3 63.2 82.7 78.1 72.0 77.5 44.8

Ouyang et al. [9] 86.5 78.2 61.7 49.3 76.9 70.0 67.6 70.0 43.1

Pishchulin et. [11] 87.5 77.6 61.4 47.6 79.0 75.2 68.4 71.0 45.0

Kiefel&Gehler [7] 83.5 73.7 55.9 36.2 73.7 70.5 66.9 65.8 38.6

Ramakrishna et al. [12] 84.9 77.8 61.4 47.2 73.6 69.1 68.8 69.0 35.2

Table 3: Pose estimation results (PCK) on LSP (OC) dataset.
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Figure 1: Pose estimation results over all PCK thresholds on

LSP (OC) dataset.

Torso Upper Lower Upper Fore- Head PCP

Leg Leg Arm arm

AFR-CNN (unary) 92.9 86.3 79.8 77.0 64.2 91.8 79.9

Dense-CNN (unary) 96.0 91.0 83.5 82.8 71.8 96.2 85.0

Chen&Yuille [1] 92.7 82.9 77.0 69.2 55.4 87.8 75.0

Ouyang et al. [9] 88.6 77.8 71.9 61.9 45.4 84.3 68.7

Pishchulin et. [11] 88.7 78.9 73.2 61.8 45.0 85.1 69.2

Kiefel&Gehler [7] 84.3 74.5 67.6 54.1 28.3 78.3 61.2

Ramakrishna et al. [12] 88.1 79.0 73.6 62.8 39.5 80.4 67.8

Table 4: Pose estimation results (PCP) on LSP (OC) dataset.

entire PCK curve for smaller distance thresholds (c.f. Fig. 1).

Comparing the performance by AFR-CNN and

Dense-CNN to the state of the art, we observe that both

proposed approaches significantly outperform other methods.

Both deep learning based approaches of Chen&Yuille [1]

and Ouyang et al. [9] are outperformed by +10.7 and

+18.2% PCK when compared to the best performing

Dense-CNN. Analysis of PCK curve for the entire range of

PCK distance thresholds reveals even larger performance

differences (c.f. Fig. 1). The results using OC annotations

confirm our findings from PC evaluation and clearly show

the advantages of the proposed part detection models over

the state-of-the-art deep learning methods [1, 9], as well as

over earlier pose estimation methods based on hand-crafted

image features [11, 7, 12].

PCP evaluation measure. Results using OC annotations

and PCP evaluation measure are shown in Tab. 4. Overall,

the trend is similar to PC evaluation: both proposed ap-

proaches significantly outperform the state-of-the-art meth-

ods with Dense-CNN achieving the best result of 85.0% PCP

thereby improving by +10% PCP over the best published

result [1].

2. Additional Results on WAF dataset

Qualitative comparison of our joint formulation

DeepCut MP Dense-CNN to the traditional two-stage ap-

proach Dense-CNN det ROI relying on person detector, and

to the approach of Chen&Yuille [2] on WAF dataset is shown

in Fig. 2. See figure caption for visual performance analysis.

3. Additional Results on MPII Multi-Person

Qualitative comparison of our joint formulation

DeepCut MP Dense-CNN to the traditional two-stage ap-

proach Dense-CNN det ROI on MPII Multi-Person dataset

is shown in Fig. 3 and 4. Dense-CNN det ROI works well

when multiple fully visible individuals are sufficiently sepa-

rated and thus their body parts can be partitioned based on

the person detection bounding box. In this case the strong

Dense-CNN body part detection model can correctly esti-

mate most of the visible body parts (image 16, 17, 19).

However, Dense-CNN det ROI cannot tell apart the body

parts of multiple individuals located next to each other and

possibly occluding each other, and often links the body parts

across the individuals (images 1-16, 19-20). In addition,

Dense-CNN det ROI cannot reason about occlusions and

truncations always providing a prediction for each body part

(image 4, 6, 10). In contrast, DeepCut MP Dense-CNN is

able to correctly partition and label an initial pool of body

part candidates (each image, top row) into subsets that cor-

respond to sets of mutually consistent body part candidates

and abide to mutual consistency and exclusion constraints

(each image, row 2), thereby outputting consistent body pose

predictions (each image, row 3). c 6= c
′ pairwise terms al-

low to partition the initial set of part detection candidates

into valid pose configurations (each image, row 2: person-

clusters highlighted by dense colored connections). c = c
′

pairwise terms facilitate clustering of multiple body part

candidates of the same body part of the same person (each

image, row 2: markers of the same type and color). In ad-

dition, c = c
′ pairwise terms facilitate a repulsive property

that prevents nearby part candidates of the same type to be

associated to different people (image 1: detections of the

left shoulder are assigned to the front person only). Fur-

thermore, DeepCut MP Dense-CNN allows to either merge

or deactivate part hypotheses thus effectively performing

non-maximum suppression and reasoning about body part

occlusions and truncations (image 3, row 2: body part hy-

potheses on the background are deactivated (black crosses);

image 6, row 2: body part hypotheses for the truncated body

parts are deactivated (black crosses); image 1-6, 8-9, 13-14,

row 3: only visible body parts of the partially occluded peo-

ple are estimated, while non-visible body parts are correctly

predicted to be occluded). These qualitative examples show

that DeepCuts MP can successfully deal with the unknown

number of people per image and the unknown number of
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Figure 2: Qualitative comparison of our joint formulation DeepCut MP Dense-CNN (rows 2, 5) to the traditional two-stage

approach Dense-CNN det ROI (rows 1, 4) and to the approach of Chen&Yuille [2] (rows 3, 6) on WAF dataset. det ROI does

not reason about occlusion and often predicts inconsistent body part configurations by linking the parts across the nearby

staying people (image 4, right shoulder and wrist of person 2 are linked to the right elbow of person 3; image 5, left elbow of

person 4 is linked to the left wrist of person 3). In contrast, DeepCut MP predicts body part occlusions, disambiguates multiple

and potentially overlapping people and correctly assembles independent detections into plausible body part configurations

(image 4, left arms of people 1-3 are correctly predicted to be occluded; image 5, linking of body parts across people 3 and 4 is

corrected; image 7, occlusion of body parts is correctly predicted and visible parts are accurately estimated). In contrast to

Chen&Yuille [2], DeepCut MP better predicts occlusions of person’s body parts by the nearby staying people (images 1, 3-9),

but also by other objects (image 2, left arm of person 1 is occluded by the chair). Furthermore, DeepCut MP is able to better

cope with strong articulations and foreshortenings (image 1, person 6; image 3, person 2; image 5, person 4; image 7, person

4; image 8, person 1). Typical DeepCut MP failure case is shown in image 10: the right upper arm of person 3 and both arms

of person 4 are not estimated due to missing part detection candidates.
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Figure 3: Qualitative comparison of our joint formulation DeepCut MP Dense-CNN (rows 1-3, 5-7) to the traditional two-stage

approach Dense-CNN det ROI (rows 4, 8) on MPII Multi-Person dataset. See Fig. 1 in paper for the color-coding explanation.
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Figure 4: Qualitative comparison (contd.) of our joint formulation DeepCut MP Dense-CNN (rows 1-3, 5-7) to the traditional

two-stage approach Dense-CNN det ROI (rows 4, 8) on MPII Multi-Person dataset. See Fig. 1 in paper for the color-coding.



visible body parts per person.
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