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Abstract

The optical flow of humans is well known to be useful for the analysis of human
action. Given this, we devise an optical flow algorithm specifically for human motion
and show that it is superior to generic flow methods. Designing a method by hand is im-
practical, so we develop a new training database of image sequences with ground truth
optical flow. For this we use a 3D model of the human body and motion capture data
to synthesize realistic flow fields. We then train a convolutional neural network to esti-
mate human flow fields from pairs of images. Since many applications in human motion
analysis depend on speed, and we anticipate mobile applications, we base our method on
SpyNet with several modifications. We demonstrate that our trained network is more ac-
curate than a wide range of top methods on held-out test data and that it generalizes well
to real image sequences. When combined with a person detector/tracker, the approach
provides a full solution to the problem of 2D human flow estimation. Both the code and
the dataset are available for research.

1 Introduction

A significant fraction of videos on the Internet contain people moving [18] and the literature
suggests that optical flow plays an important role in understanding human action [25, 39].
Several action recognition datasets [28, 39] contain human motion as a major component.
The 2D motion of humans in video, or human flow, is an important feature that provides a
building block for systems that can understand and interact with humans. Human flow is
useful for various applications including analyzing pedestrians in road sequences, motion-
controlled gaming, activity recognition, human pose estimation system, etc.

Despite this, optical flow has previously been treated as a generic, low-level, vision prob-
lem. Given the importance of people, and the value of optical flow in understanding them,
we develop a flow algorithm that is specifically tailored to humans and their motion. Such
motions are non-trivial since humans are complex, articulated, objects that vary in shape,
size and appearance. They move quickly, self occlude, and adopt a wide range of poses.

Our goal is to obtain more accurate 2D motion estimates for human bodies by training
a flow algorithm specifically for human movement. To do so, we create a large and realistic
dataset of humans moving in virtual worlds with ground truth optical flow (Fig. 1(a)). We
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(a) Our dataset (b) Results on synthetic scenes  (c) Results on real world scenes

Figure 1: (a) We simulate human motion in virtual world creating an extensive dataset with
images (top row) and flow fields (bottom row); color coding from [2]. (b) We train an existing
deep network for human motion estimation and show that it performs better when trained on
our dataset and (c) generalizes to human motions in real world scenes.

train a neural network based on SPyNet [35] using this dataset and show that it outperforms
state of the art optical flow on the test sequences of this dataset (Fig. 1(b)). Furthermore we
show that it generalizes to real video sequences (Fig. 1(c)). Here we also extend SPyNet,
making it end-to-end trainable.

Several datasets and benchmarks [2, 5, 17] have been established to drive the progress
in optical flow. We argue that these datasets are insufficient for the task of human motion
estimation and, despite its importance no attention has been paid to datasets and algorithms
for human flow. One of the main reasons is that dense human motion is extremely difficult
to capture accurately in real scenes. Without ground truth, there has been little work focused
specifically on estimating human optical flow. To advance research on this problem, the
community needs a dataset tailored to human flow.

A key observation is that recent work has shown that optical flow methods trained on
synthetic data [9, 22, 35] generalize relatively well to real data. Additionally, these methods
obtain state of the art results with increased realism of the training data [15, 33]. This
motivates our effort to create a dataset designed for human motion.

To that end, we use the SMPL body model [30] to generate about a hundred thousand
different human shapes. We then place them on random indoor backgrounds and simulate
human activities like running, walking, dancing etc. using motion capture data [29]. Thus,
we create a large virtual dataset that captures the statistics of natural human motion. We
then train a deep neural network based on spatial pyramids [35] and evaluate its performance
for estimating human motion. While the dataset can be used to train any flow method, we
choose SpyNet because it is compact and computationally efficient.

In summary, our major contributions are: 1) we provide the “Human Flow dataset” with
146,020 frame pairs of human bodies in motion with realistic textures and backgrounds; 2)
we show that our network outperforms previous optical flow methods by 30% on the Human
Flow dataset, and it generalizes to real world scenes; 3) we extend SPyNet to be fully end-
to-end trainable; 4) our neural network is very small (7.8 MB for the network parameters)
and runs in real time (32fps), hence it can be potentially used for embedded applications; 5)
we provide data, code, and the trained model’ for research purposes.

mttp://github.com/anuragranj/humanflow
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2 Related Work

Human Motion. Human motion can be understood from 2D motion. Early work focused on
the movement of 2D joint locations [26] or simple motion history images [8]. Optical flow
is also a useful cue. Black et al. [3] use principal component analysis (PCA) to parametrize
human motion but use noisy flow computed from image sequences for training data. More
similar to us, Fablet and Black [10] use a 3D articulated body model and motion capture data
to project 3D body motion into 2D optical flow. They then learn a view-based PCA model of
the flow fields. We use a more realistic body model to generate a large dataset and use this
to train a CNN to directly estimate dense human flow from images.

Only a few works in pose estimation have exploited human motion and, in particular
several methods [13, 44] use optical flow constraints to improve 2D human pose estimation
in videos. Similar work [6, 34] propagates pose results temporally using optical flow to
encourage time consistency of the estimated bodies. Apart from its application in warping
between frames, the structural information existing in optical flow has been used for pose
estimation alone [38] or in conjunction with an image stream [11].

Learning Optical Flow. There is a long history of optical flow estimation, which we do
not review here. Instead, we focus on the relatively recent literature on learning flow. Early
work looked at learning flow using Markov Random Fields [14], PCA [42] , or shallow
convolutional models [7]. Other methods also combine learning with traditional approaches,
formulating flow as a discrete [20] or continuous [36] optimization problem.

The most recent methods employ large datasets to estimate optical flow using deep neural
networks. Voxel2Voxel [40] is based on volumetric convolutions to predict optical flow
using 16 frames simultaneously but does not peform well on benchmarks. Other methods
[9, 22, 35] compute two frame optical flow using an end-to-end deep learning approach.
FlowNet [9] uses the Flying Chairs dataset [9] to compute optical flow in an end to end deep
network. FlowNet 2.0 [22] uses stacks of networks from FlowNet and performs significantly
better, particularly for small motions. Ranjan and Black [35] propose a Spatial Pyramid
Network that employs a small neural network on each level of an image pyramid to compute
optical flow. Their method uses a much smaller number of parameters and achieves similar
performance as FlowNet [9] using the same training data. Since the above methods are not
trained with human motions, they do not perform well on our Human Flow dataset.

Optical Flow Datasets. Several datasets have been developed to facilitate training and
benchmarking of optical flow methods. Middlebury is limited to small motions [2], KITTT is
focused on rigid scenes and automotive motions [17], while Sintel has a limited number of
synthetic scenes [5]. These datasets are mainly used for evaluation of optical flow methods
and are generally too small to support training neural networks.

To learn optical flow using neural networks, more datasets have emerged that contain
examples on the order of tens of thousands of frames. The Flying Chairs [9] dataset contains
about 22,000 samples of chairs moving against random backgrounds. Although it is not
very realistic or diverse, it provides training data for neural networks [9, 35] that achieve
reasonable results on optical flow benchmarks. Even more recent datasets [15, 33] for optical
flow are especially designed for training deep neural networks. Flying Things [33] contains
tens of thousands of samples of random 3D objects in motion. The Monkaa and Driving
scene datasets [33] contain frames from animated scenes and virtual driving respectively.
Virtual KITTI [15] uses graphics to generate scenes like those in KITTI and is two orders of
magnitude larger. Recent synthetic datasets [16] show that synthetic data can train networks
that generalize to real scenes.
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Figure 2: Pipeline for generating the RGB frames and ground truth optical flow for the
Human Flow dataset.

For human bodies, the SURREAL dataset [41] uses 3D human meshes rendered on top
of images to train networks for 2D pose estimation, depth estimation, and body part segmen-
tation. While not fully realistic, they show that this data is sufficient to train methods that
generalize to real data. We go beyond their work to address the problem of optical flow.

3 The Human Flow Dataset

Our approach generates a realistic dataset of synthetic human motions by simulating them
against different realistic backgrounds. As shown in Figure 2, we use the SMPL model [30]
to generate a wide variety of different human shapes and appearances. We use Blender > as
a rendering engine to generate synthetic image frames and optical flow. In the rest of the
section, we describe each component of our pipeline shown in Figure 2.

Body model and Rendering Engine. The main challenge in the generation of realistic
human optical flow is modeling realistic articulated motions. As shown in Figure 2, we
use the SMPL model [30], parameterized by pose and shape parameters to change the body
posture and identity. The model also contains a UV appearance map that allows us to change
the skin tone, face features and clothing texture of the model. A key component of Blender
in this project is its Vector pass. This render pass is typically used for producing motion
blur, and it produces the motion in image space of every pixel; i.e. ground truth optical flow.
We are mainly interested in the result of this pass, together with the color rendering of the
textured bodies.

Body Poses. In order to obtain a varied set of poses, we use motions from the Hu-
man3.6M dataset [23]. Human3.6M contains five subjects for training (S1, S5, S6, S7, S8)
and two for testing (S9, S11). Each subject performs 15 actions twice, resulting in 1,559,985
frames for training and 550,727 for testing. These sequences are subsampled at a rate of
16 %, resulting in 97,499 training and 34,420 testing poses from Human3.6M. The pose data
is then converted into SMPL body models using MoSh [29]. We limit each of our pose
sequences to 20 frames.

Body shapes. To maximize the variety of the data, each sequence of 20 frames uses a
random body shape drawn from a uniform distribution of SMPL shape parameters bounded
by [—3,3] standard deviations for each shape coefficient according to the shape distribution
in CAESAR [37]. Using a parametric distribution ensures that each sub-sequence of frames
has a unique body shape. A uniform distribution has more extreme shapes than the Gaussian

2https://www.blender.org/
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distribution inferred originally from CAESAR, while avoiding unlikely shapes by strictly
bounding the coefficients.

Scene Illumination. Optical flow estimation should be robust to different scene illumi-
nation. In order to achieve this invariance, we illuminate the bodies with Spherical Harmon-
ics lighting [19]. Spherical Harmonics define basis vectors for light directions that are scaled
and linearly combined. This compact parameterization is particularly useful for randomizing
the scene light. The linear coefficients are randomly sampled with a slight bias towards nat-
ural illumination. The coefficients are uniformly sampled between —0.7 and 0.7, apart from
the ambient illumination (which is strictly positive and a minimum of 0.3) and the vertical
illumination (which is strictly negative to prevent illumination from below).

Body texture. To provide a varied set of appearances to the bodies in the scene, we use
textures from two different sources. A wide variety of human skin tones is extracted from
the CAESAR dataset [37]. Given SMPL registrations to CAESAR scans, the original per-
vertex color in the CAESAR dataset is transferred into the SMPL texture map. Since fiducial
markers were placed on the bodies of CAESAR subjects, we remove them from the textures
and inpaint them to produce a natural texture. The main drawback of CAESAR scans is their
homogeneity in terms of outfit, since all of the subjects wore grey shorts and the women wore
sports bras. In order to increase the clothing variety, we also use textures extracted from 3D
scans. A total of 772 textures from 7 different subjects with different clothes were captured.
All textures were anonymized by replacing the face by the average face in CAESAR, after
correcting it to match the skin tone of the texture. The datasets were partitioned 70%|30%
into training and testing, and each texture dataset was sampled with a 50% chance.

Background texture. The other crucial component of image appearance is the back-
ground. Since human motion rarely happens in front of clean and easily segmentable scenes,
realistic backgrounds should be included in the synthetic scenes. We found that using ran-
dom indoor images from the LSUN dataset [43] as background provided a good compromise
between simplicity and the complex task of generating varied full 3D environments. We used
417,597 images from LSUN categories kitchen, living room, bedroom and dining room. The
background images were placed as billboards 9 meters from the camera, and were not af-
fected by the spherical harmonics lighting.

Increasing image realism. One of the main differences between synthetic and real im-
ages are the imperfections existing in the latter. Fully sharp images rendered with perfectly
static virtual cameras do not represent well the images captured in real situations. In order
to increase realism, we introduced three types of images imperfections. First, in 30% of the
generated images we introduced camera motion between frames. This motion perturbs the
location of the camera with Gaussian noise of 1 centimeter standard deviation, and rotation
noise of 0.2 degrees standard deviation per dimension in an Euler angle representation. Sec-
ond, motion blur was added to the scene. The motion blur was implemented with the Vecror
Blur Node in Blender, and integrated over 2 frames sampled with 64 steps between the be-
ginning and end point of the motion. Finally, general image blur was added to 30% of the
images, as Gaussian blur with a standard deviation of 1 pixel.

Dataset Details. In comparison with other optical flow datasets, our dataset is larger
by an order of magnitude, containing 135,153 training frames and 10,867 test frames with
optical flow ground truth. We keep the resolution small at 256 x 256 to facilitate easy de-
ployment for training neural networks. We show the comparisons in Table 1(a). This also
speeds up the rendering process in Blender for generating large amounts of data. Our data is
extensive, containing a wide variety of human shapes, poses, actions and virtual backgrounds
to support deep learning systems.
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Figure 3: A Spatial Pyramid Network [35] for Optical Flow. At each pyramid level, network
G, predicts flow residuals vy, that get added up to produce full flow V5. w is warping operator.
u,d are learned convolutional layers that upsample flows and downsample images. The figure
shows 3 pyramid levels for simplicity. Our implementation uses 4 levels.

4 Learning

Our neural network derives from SPyNet [35], which employs different convnets at different
levels of an image pyramid. In SPyNet, these convnets are trained independently and se-
quentially to estimate optical flow. In contrast, we introduce learnable convolutional layers
u,d, for upsampling and downsampling between pyramid levels. In SPyNet, these are fixed
bilinear operators. A differential warping operator, w [24] facilitates our model to be fully
differentiable and end-to-end trainable. Thus, we perform joint training of all the convnets
at different pyramid levels rather than training them sequentially like SPyNet. We briefly de-
scribe the spatial pyramid structure and introduce our network and learning process below.

Our architecture consists of 4 pyramid levels. For simplicity, we show 3 of the 4 pyramid
levels in Figure 3. Each level works on a particular resolution of the image. The top level
works on the full resolution and the images are downsampled as we move to the bottom of
the pyramid. Each level learns a convolutional layer d, to perform downsampling of images.
Similarly, a convolution layer u, is learned for upsampling optical flow. At each level, we
also learn a convnet Gy to predict optical flow residuals vy at that level. These flow residuals
get added at each level to produce the full flow, Vk at the finest level of the pyramid.

Each convnet Gy takes a pair of images as inputs along with flow V;_; obtained by
upsampling the output of the previous level. The second frame is however warped using V;_
and the triplet {I},w(I?,Vi_1), Vi—1} is fed as input to the convnet Gy. The structure of the
convnets Gy, is same as SPyNet. Each of the convnets Gy is a five layer network containing
{32, 64, 32, 16, 2} feature maps with 7x7 kernels. At each level, the downsampling layers
d learn 3x3 convolutional kernels with 6 feature maps to operate on 6 channels of image
pairs. Similarly, the upsampling layers u learn 4x4 convolutional kernels with 2 feature
maps to operate on 2-channel flows. We use w to refer to a bilinear warping operator which
is non-learnable. The general structure of spatial pyramids can be seen in [35]. We import
the weights of our convnets G; from the first four convnets {Gy, G1,G>,G3} of SPyNet pre-
trained on the Flying Chairs dataset [9]. We use a differentiable warping operator, w [24].
We now construct our fully differentiable spatial pyramid architecture and train it end-to-end
minimizing an End Point Error (EPE).
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Hyperparameters. We use Adam [27] to optimize our loss at a constant learning rate
of 1075, B; = 0.9 and B, = 0.999. We use a batch size of 8 and run 4000 iterations per
epoch. We train our model for 100 epochs on the Human Flow dataset. We use the Torch7?
framework for our implementation and use four Nvidia K80 GPUs to train in parallel. It
takes 1 day for our model to train.

Data Augmentations. We also augment our data by applying several transformations
and adding noise. Although our dataset is quite large, augmentation improves the quality of
results on real scenes. In particular, we apply scaling in the range of [0.3,3], and rotations
in [—17°,17°]. We randomly crop the images and flows to 256 x 256 at the finest level. We
sample uniform Gaussian noise A (0,1) and add it to the images with a weight factor of
1:10. We also apply color jitter with additive brightness, contrast, and saturation changes.
The dataset is normalized to have zero mean and unit standard deviation using [21].

5 Experiments

We compare the average End Point Errors (EPEs) of competing methods in Table 1(b) along
with the time for evaluation. Human motion is complex and general optical flow methods
fail to capture it. Our trained network outperforms previous methods, and SPyNet [35]
in particular, in terms of average EPE on the Human Flow Dataset. This indicates that
other optical flow networks can also improve their performance on human motion using our
dataset. We show visual comparisons in Figure 4.

Optical flow methods that employ learning using large datasets such as FlowNetS [9]
show poor generalization on our dataset. Since the results of FlowNetS are very close to the
zero flow baseline (Table 1), we cross-verify by evaluating FlowNetS on a mixture of Flying
Chairs [9] and Human Flow dataset and observe that the flow outputs on human flow dataset
is quite random (see Figure 4). The main reason is that our dataset contains a significant
amount of small motions and it is known that FlowNetS does not perform very well on small
motions. SPyNet [35] however performs quite well and is able to generalize to body motions.
The results however look noisy in many cases.

Our dataset employs a layered structure where a human is placed against a background.
As such layered methods like PCA-layers [42] perform very well on a few images (row 4 in
Figure 4) where they are able to segment a person from the background. However, in most
cases, they do not obtain good segmentation into layers.

Previous state-of-the-art methods like LDOF [4], EpicFlow [36] and FlowFields [1] per-
form much better than others. They get a good overall shape, and smooth backgrounds.
However, their estimation is quite blurred. They tend to miss the sharp edges that are typical
of human hands and legs. They are also significantly slower.

In contrast, our network outperforms the state of the art optical flow methods by 30%
on the Human Flow dataset. Our qualitative results show that our method can capture sharp
details like hands and legs of the person. Since, our test data is comparatively large, we
evaluate only the fastest optical methods on our dataset.

Real Scenes. We show a visual comparison of results on real-world scenes of people
in motion. We collect these scenes by cropping people from real world videos as shown in
Figure 5(a). We use DPM [12] for detecting people and compute bounding box regions in
two frames using the ground truth of the MOT 16 dataset [32].

3http://torch.ch
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# Train # Test

Dataset Frames  Frames Resolution Method AEPE  Time(s)
MPI Sintel[5] 1,064 564 1024 x 436 Zero 0.6611 -
KITTI 2012[17] 194 195 1226 x 370 FlowNet[9] 0.5846 0.080
KITTI 2015[31] 200 200 1242 x 375 PCA Flow[42] 0.3652 10.357
Virtual Kitti[15] 21,260 — 1242 x 375 SPyNet[35] 0.2066 0.038
Flying Chairs[9] 22,232 640 512 x 384 Epic Flow[36]  0.1940 1.863
Flying Things[33] 21,818 4,248 960 x 540 LDOF[4] 0.1881 8.620
Monkaa[33] 8,591 — 960 x 540 Flow Fields[1]  0.1709 4.204
Driving[33] 4,392 — 960 x 540 HumanFlow 0.1164 0.031
Human Flow 135,153 10,867 256 x 256 (b)

(a)

Table 1: (a) Comparison of Human Flow dataset with previous optical flow datasets. (b)
EPE comparisons and evaluation times of different optical flow methods on the Human Flow
dataset. Zero refers to the EPE when zero flow is always used for evaluation.

We visually compare our results with other popular optical flow methods on real world
scenes in Figure 5(b). The performance of PCA-Layers [42] is highly dependent on its
ability to segment. Hence, we see only a few cases where it looks visually correct. SPyNet
[35] gets the overall shape but the results look noisy in certain image parts. While LDOF
[4], EpicFlow [36] and FlowFields [1] generally perform well, they often find it difficult to
resolve the legs, hands and head of the person. The results from HumanFlow look appealing
especially while resolving the overall human shape, and various parts like legs, hands and
the human head. HumanFlow also performs very well under occlusions when the full body
is not visible.

Timing Evaluation. Although some of the methods do quite well on our benchmark,
they tend to be slow due to their complex nature. As such, they are not likely to be used
in real time or embedded applications. We show timing comparisons on a pair of frames
in Table 1. We show that learning with human flow data can make our model a lot simpler
while simultaneously making it fast and accurate for capturing human motion. Our model
takes 31 ms for inference on NVIDIA TitanX. As such it can run in real time at 32 fps.

Network Size. Employing spatial pyramid structures [35] to neural network architec-
tures leads to significant reduction of size. As such our network is quite small and can be
stored in 7.8 MB of memory. Our network has a total of 4.2 million learnable parameters
making it fast and easy to train.

6 Conclusion and Future Work

In summary, we created an extensive dataset containing images of realistic human shapes
in motion together with groundtruth optical flow. The realism and extent of this dataset, to-
gether with an end-to-end trained system, allows our new HumanFlow method to outperform
previous state-of-the-art optical flow methods in our new human-specific dataset. Further-
more, we show that our method generalizes to human motion in real world scenes for optical
flow computation. Our method is compact and runs in real time making it highly suitable for
phones and embedded devices.
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Figure 4: Visual comparison of optical flow estimates using different methods on the Human
Flow test set. From left to right, we show Frame 1, Frame 2, Ground Truth flow, results
on FlowNetS [9], PCA-Layers [42], SPyNet [35], EpicFlow [36], LDOF [4], FlowFields [1]
and HumanFlow (ours).

In future work, we plan to model more subtle human motions such as those of faces and
hands. We also plan to generate training sequences contining multiple, interacting people,
and more complex 3D scene motions. Additionally, we plan to add 3D clothing and acces-
sories. The dataset and our focus on human flow opens up a number of research directions
in human motion understanding and optical flow computation. We would like to extend our
dataset by modeling more diverse clothing and outdoor scenarios. A direction of potentially
high impact for this work is to integrate it in end-to-end systems for action recognition, which
typically take pre-computed optical flow as input. The real-time nature of the method could
support motion-based interfaces, potentially even on devices like cell phones with limited
computing power. The data, model, and training code is available, enabling researchers to
apply this to problems involving human motion.

(®)

Figure 5: (a) We use a person detector to crop out people from real-world scenes (left) and
use our model to compute optical flow on the cropped section (right). (b) Visual comparison
on real scenes. From left to right, we show Frame 1, Frame 2, results on PCA-Layers [42],
and SPyNet [35], EpicFlow [36], LDOF [4], FlowFields [1] and HumanFlow (ours). Our
method is good at picking up limb and head motion.
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