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Abstract
Parsing continuous human motion into meaningful segments plays an essential role

in various applications. In this work, we propose a hierarchical dynamic clustering
framework to derive action clusters from a sequence of local features in an unsuper-
vised bottom-up manner. We systematically investigate the modules in this framework
and particularly propose diverse temporal pooling schemes, in order to realize accurate
temporal action localization. We demonstrate our method on two motion parsing tasks:
temporal action segmentation and abnormal behavior detection. The experimental results
indicate that the proposed framework is significantly more effective than the other related
state-of-the-art methods on several datasets.

1 Introduction
Human motion parsing is the task of partitioning a continuous human motion sequence into
several meaningful primitive actions. It has various applications including animation, gait
analysis and human-robot interaction, and is of great interest both in research and industry.

In recent years, human motion parsing is mainly investigated by model-based methods
[1, 4, 22, 24], which require a large amount of training data and manual annotation. Thus,
they are often not applicable when training data is limited or testing scenarios have visual
domain shifting. For example, recording daily behaviors of patients (especially in video) are
in general forbidden due to privacy issues, hence only few data is available to train the model
offline. Moreover, a number of applications require fast response (e.g., ≤ 0.1 second) to the
sensory input, such as detecting falling and raising the alarm, yet the supervised methods
usually have unsatisfactory lags.
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These limitations can be overcome by unsupervised methods of human motion pars-
ing [8, 14, 32, 35]. Despite being applicable to uncontrolled real-world scenarios, an es-
sential difficulty of the unsupervised method is to aggregate temporal local features (e.g.,
frame-wise body skeleton data) to the patterns of actions spanning in longer time durations,
without the support of learned models as in the supervised methods. Thus, it is expected
to setup a bottom-up pipeline to generate patterns of different actions, which can be subse-
quently differentiated by straightforward metrics like the Euclidean distance. Referring to
the literature of action recognition [20, 28], local input features are encoded according to
a codebook, then fused by a temporal pooling scheme. The outstanding performances with
simple classifiers, like linear SVM, can indicate that such bottom-up aggregation is effective.
Nevertheless, each video is trimmed to contain only one action, hence the temporal pooling
step is simply to compute the average of encoded features of the entire video.

When processing natural untrimmed input streams, the temporal pooling scheme be-
comes highly nontrivial, since it is required to determine the temporal boundaries of differ-
ent actions in a video. Without the support of supervised models, in which the temporal
durations can be learned from massive data, e.g. [1], solving such problem is extremely
challenging. First, human behaviors have a large range of temporal scales and intra-person
variations. Second, determining accurate temporal durations requires precise action repre-
sentations, and vice versa, leading to a “chicken-egg” problem that two inherently difficult
tasks, namely action representation and action temporal localization, are coupled.
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Figure 1: Illustration of our proposed method. The input features are generic and can be
IDT+FV [28], outputs of convolutional nets [25] and motion capture data. The HDC pipeline
comprises four components and produces a 1-D piece-wise constant sequence indicating the
human parsing result. In this figure, colors denote different types of actions.

To address these challenges, in this paper we propose a hierarchical dynamic clustering
framework, which is illustrated in Figure 1. Referring to the Bag-of-Words method for
action analysis [20], in our framework the codebook is learned via dynamic clustering [32]
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and the feature aggregation step comprises feature encoding and temporal pooling. With
the merits of dynamic clustering, the number of the clusters is not necessary to be known
in advance, but is estimated from the input data stream and is determined by the nature of
human motion continuity. As it is unsupervised, self-evolving and efficient to process the
input data stream (faster than standard k-means and spectral clustering as discussed in [32]),
it could be employed in a large number of applications both in research and industry.

Another key contribution of our work is the study of temporal pooling methods for un-
supervised human motion parsing. Besides validating the standard dense sliding window
scheme [5], we propose two effective pooling schemes: kernelized cut-based pooling which
is derived from the work [8, 23], and motion energy-based pooling which is inspired by the
work [13, 31], in which the motion energy measure is proposed based on the concept of
cognitive attention. We demonstrate our method on two motion parsing tasks: temporal ac-
tion segmentation and abnormal action detection. The experimental results indicate that the
proposed framework is significantly more effective than previous state-of-the-art in terms of
accuracy and efficiency. For instance, for the temporal action segmentation task, our method
achieves 0.87/0.91 of precision/recall values in the CMUMAD dataset. For the abnormality
detection test, our method achieves 0.92 of accuracy in 0.07 second to recognize fainting as
a novel behavior in the BOMNI dataset [3].

2 Related Work
Here we discuss several investigations in the past relevant to our methodology, as well as
some studies on temporal action segmentation and abnormal behavior detection, which can
be solved by human motion parsing.

Human motion parsing. Human motion parsing is highly related to continuous action
understanding [2, 4, 22, 30] and action detection in untrimmed videos [1, 6, 21, 24, 29, 33],
which are prevalent in recent years. However, we are motivated to propose alternative meth-
ods, which are unsupervised, efficient and not data-hungry. Our hierarchical dynamic clus-
tering framework is motivated by the effective performances of bag-of-words pipelines for
action recognition [20, 28] and the dynamic clustering [32] for temporal action segmentation.

Temporal action segmentation. Parsing a continuous human motion can directly yield
the segmentation result. In the case of temporal action segmentation, the temporal bound-
aries are focused while the segmentation labels (generated by clustering methods) can be
ignored. Zhou et al. [35] proposes aligned cluster analysis (ACA) that uses a kernel for
time series alignment and obtain optimized temporal boundaries via dynamic clustering.
Krüger et al. [12] proposes an efficient motion segmentation approach (EMS), in which a
feature bundling method is used to generate compact and robust motion representations. Li
et al. [14] addresses motion segmentation via temporal subspace clustering (TSC). Zhang et
al. [32] proposes a dynamic clustering algorithm (DC) to segment human actions temporally,
and systematically compare different clustering methods for codebook learning.

Abnormality detection. In [16], abnormalities are regarded as statistical outliers of the
distribution of normal behaviors. In [18], a two-dimensional tree structure is established
based on normal behaviors and abnormal behaviors in the test data are detected by matching.
In [9], a deep autoencoder is trained to learn the temporal regularity of normal behaviors, and
abnormalities are detected by detecting irregular patterns. These methods are unsupervised,
but require training data to create a model. In contrast, our human motion parsing method
detects novelties only based on previously preprocessed data in the same sequence. After
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long-term observation, novel behaviors are normally equivalent to abnormal behaviors.
Comparison with dynamic clustering [32]. Our method is distinguished from [32]

according to the following two aspects: (1) our method uses dynamic clustering to process
high-level action patterns, while [32] uses k-means. (2) our method uses novel temporal
pooling methods, i.e., kernelized cut-based and motion energy-based pooling, while [32]
uses sliding window or dataset-dependent approaches.

3 Methods

3.1 Hierarchical dynamic clustering framework

Our hierarchical framework is proposed based on the bag-of-words pipeline, as illustrated in
the block of Hierarchical Dynamic Clustering in Figure 1. In our work, we use dynamic
clustering for codebook learning and soft-assignment for feature encoding due to validated
performances on action analysis [20, 32]. Therefore, we can create a bottom-up pipeline to
convert low-level input features to action patterns in an unsupervised manner.

While it is known that dynamic clustering outperforms k-means in terms of codebook
learning (grouping low-level input features) [32], there have not been extensive studies on
how well dynamic clustering is able to group high-level action patterns. Because of this,
we replace the k-means module in a previous studies [32] by other methods, and evaluate
their performances. We first conduct a qualitative study here, while the quantitative results
are discussed in Section 4. We find that dynamic clustering outperforms k-means and spec-
tral clustering [19, 27] for action pattern grouping, and hence use dynamic clustering after
temporal pooling, as shown in Figure 1.

We estimate the improved dense trajectories and derive Fisher vectors [28] of the drinkwa-
terS1R1 video in the RADL dataset [17], which consists of three actions (i.e., fetching wa-
ter, pouring water and drinking water). The Gaussian mixture model has 32 components
and is trained from the videos drinkwaterS1R2 and drinkwaterS1R3. The Fisher vectors
have 12,288 dimensions, and are extracted using a sliding window of 50-frame length and
1-frame stride. We apply PCA to reduce the dimension of vectors to 50 before performing
the clustering algorithm.

The results are shown in Figure 2, in which the sequence of the high-dimensional feature
vectors are visualized by t-SNE [15]. One can see that the dynamic clustering algorithm is
able to generate and update cluster structures in an online fashion, leading to comparable re-
sults with the human annotation. The k-means and the spectral clustering algorithms falsely
parses pouring water and drinking water actions into non-consecutive segments.

3.2 Temporal Pooling

A standard temporal pooling method is to use a time sliding window on the input sequence
[5]. However, due to large variations in the temporal scales of different motions, a unique
pre-defined window size leads to fusing information of different actions into one pattern
and hence often produces poor motion features, which is illustrated in Figure 3. When the
window size is too large, many different short-term actions are merged, leading to imprecise
temporal localization. When the time window is too small, long-term actions are split and
also the temporal structure represented by each action pattern will be limited.
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Figure 2: Qualitative comparison of different clustering methods. The first row shows 5
frames of a video with rendered dense trajectories. In the second row, the trajectories denote
the 2D projections of the sequence of dimensionality-reduced Fisher vectors. The crosses
denote the 2D projections of the cluster centroids. The gray color denotes the unprocessed
Fisher vectors and other colors denote action labels.

To overcome this, we propose two alternative pooling methods: the kernelized cut-based
pooling that creates an embedding space making action patterns more distinguishable, and
the motion energy-based pooling that utilizes attention to categorize human motions into still
poses and moving actions. In particular, the motion energy-based pooling is simple yet effec-
tive for encoding representative motion features, because the temporal window is retrieved
from the energy measures that could be considered as another information source, avoid-
ing the classic “chicken-egg” problem between the temporal pooling window and encoded
motion features.

Kernelized cut-based pooling. Our kernelized cut method is developed on top of the
dense sliding window scheme: We first run the sliding window aggregation with 1-frame
stride, then use the kernelized cut method to determine disjoint time windows, and at last ag-
gregate the encoded input features within each individual time window to derive the parsing
result.

Referring to [8, 14, 23], one can create a fully connected graph, design a kernel function
to specify the edge weights and perform graph cut. Here an essential question is to design the
kernel function. Inspired by the work of [8], we propose a kernel function to measure feature
similarity with consideration of local temporal structures. Given a set of features {xxxi}, the
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kernel function k(·, ·) is given by

k(xxxi,xxx j) = ks(xxxi,xxx j) · kt(xxxi,xxx j) = exp(−α‖xxxi− xxx j‖2
2) ·

〈x̄xxi, x̄xx j〉
‖x̄xxi‖2 · ‖x̄xx j‖2

(1)

where x̄xxi =
1
|Ti| ·∑k∈Ti xxxk, Ti denotes a temporal range centered at xxxi and α is a positive con-

stant. In the kernel function, the first component ks measures the spatial similarity straight-
forwardly; the second component kt incorporates temporal information and hence can dif-
ferentiate two identical features with different temporally local statistics. In addition, in our
case the set {xxxi} is obtained by the soft-assignment encoding [20] and hence is located within
the domain of positive real numbers, leading to the fact that k(·, ·) is positive-definite and its
codomain is non-negative. In our empirical trials, our proposed kernel performs better than
the one in [8]. Figure 3 illustrates the benefit of a kernelized cut.

sliding window kernelised cut

Figure 3: Comparison between sliding window pooling (left) and kernelized pooling (right)
with the kernel function (1). One can see that the kernelized cut can find the optimal segment
with small inter-class and large intra-class similarities.

Given the kernel function, one can perform two types of cuts: sequential cut as in [8] and
batch cut as in [14, 23]. In the sequential cut, the number of cuts are highly influenced by the
pre-fixed time range: the shorter the time range is, the more cuts are produced. One can note
that a high recall value can be achieved in the result of human motion parsing, if the number
of cuts is large. In the batch cut, one is required to specify the number of clusters in advance.
Similar to specifying the time range in the sequential cut, a larger number of clusters will
result in a larger number of cuts. Nevertheless, a smaller number of clusters can also lead to
large number of cuts in certain cases.

Motion energy-based pooling. Our proposed motion energy-based pooling scheme is
inspired by the observation that most human motions can be categorized into two meta-
classes, i.e., moving actions and still poses, and moving actions can easily gain cognitive
attention. In our work, we compute a motion energy measure based on which time windows
are determined and categorized to the two meta-classes. Then, in each time window the en-
coded features are fused and dynamic clustering is applied for each meta-classes separately.

The motion energy is calculated based on the indices of clusters that the input frames
belong to, generated by the first dynamic clustering module. Afterwards, we employ a mov-
ing window to sequentially compute the motion energy, which is the number of transitions
between clusters divided by the window length. To remove noise a Gaussian smoothing
is subsequently performed. Then we detect peaks on the smoothed motion energy curve,
retrieve windows around such peaks as the time periods of moving actions, and regard the
remaining regions as still poses. See Figure 4 for illustration.
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tstill poses moving actions

Figure 4: Illustration of the motion energy-based pooling. The color of dots denotes the clus-
ter index, the curve denotes the motion energy measure and the arrows denote the detected
peaks. One can see that the moving actions and still poses are differentiated.

4 Experiments

4.1 Temporal action segmentation

Datasets. We use the CMUMAD [11] and the TUMKitchen [26] datasets to validate the
performance of our methods for temporal action segmentation. Specifically, CMUMAD
contains 40 recordings (video and motion capture data) from 20 subjects, each of which
comprises 35 different actions and null actions in between. TUMKitchen consists of 20
recordings from multiple types of modalities such as videos, motion captures and on-off
sensors on the door. The action labels are annotated for the torso and the arms separately.

Evaluation metric & Input features. On the CMUMAD dataset, the true positive is
defined as a segment having at least 50% overlaps with the ground truth yet the label has not
been detected before. On the TUMKitchen dataset, we evaluate how effective our algorithm
can locate the segment boundaries, so a true positive is the boundary detected within ±7
frames (approx. 0.25 second) of a ground truth boundary.

Our algorithm is generic and able to process diverse types of features from different
modalities. In our experiment, we use the following features: (1) the fc8 layer output of the
two stream deep neural model VGG-16 [7, 25], which is denoted as VGG16. (2) The con-
catenation of all the 3D coordinates of the joints in each individual frame, which is denoted
as JointLocation. (3) The relative 2D angles between each two adjacent 3D body parts,
which is denoted as RelativeAngle. (4) The quaternion representation of the 3D rotations
(e.g., yaw, pitch and row) of the joints, which is denoted as Quaternions. The evaluation
metric and the input features are identical to the one used in [32] to enable a fair and direct
comparison with the state-of-the-art.

Comparing with the state-of-the-art. We first compare our methods with the follow-
ing existing methods: TSC [14], ACA [35], EMS [12] and DC [32], as discussed in Sec-
tion 2. The results on the CMUMAD dataset are shown in Table 1. HDCME , HDCKC−S
and HDCKC−B denote our proposed hierarchical dynamic clustering with the motion-energy
based pooling, the kernelized sequential cut-based pooling and the kernelized batch cut-
based pooling method, respectively. Note that, DC [32] compared in Table 1 utilizes the
prior knowledge to dedicatedly design the temporal pooling step for CMUMAD, whereas
our proposed temporal pooling methods are generic and do not use any dataset specific in-
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formation. Nevertheless, HDCME outperforms other work for most of the input features
by large margin. The performance of the kernelized cut pooling methods is inferior to the
motion energy pooling. The reason is that the temporal pooling is conducted based on a
pre-defined sliding window size. Without utilizing the prior knowledge of the dataset, which
is performed in most of the previous works, it is hard to derive the representative action
patterns for various time durations.

Method VGG16 [7] JointLocation RelativeAngle Quaternions

TSC [14] 0.01/0.20/0.02 0.10/0.30/0.15 0.05/0.29/0.09 0.05/0.29/0.09
ACA [35] 0.56/0.66/0.61 0.55/0.68/0.61 0.51/0.65/0.57 0.55/0.66/0.60
EMS [12] 0.67/0.73/0.70 0.34/0.78/0.47 0.47/0.89/0.62 0.60/0.51/0.55
DC [32] 0.44/0.60/0.51 0.82/0.86/0.84 0.63/0.64/0.63 0.63/0.52/0.57
HDCKC−S 0.23/0.41/0.29 0.50/0.82/0.62 0.52/0.82/0.64 0.31/0.58/0.40
HDCKC−B 0.14/0.40/0.21 0.39/0.86/0.54 0.37/0.85/0.52 0.18/0.61/0.28
HDCME 0.72/0.82/0.77 0.86/0.88/0.87 0.87/0.91/0.89 0.76/0.57/0.65

Table 1: Comparison with the state-of-the-art on the CMUMAD dataset. The results are
shown in the format of precision/recall/f-score. The best results are in boldface.

The results on the TUMKitchen dataset are shown in Table 2. In terms of f-score,
the proposed HDCKC−B method shows superior performance to others. Interestingly, the
performance of the HDCME method is not as outstanding as it is on the CMUMAD dataset.
Our observation is that in the TUMKitchen dataset, the recorded persons perform certain
actions most of the time, the variation for the motion energy is not significant, therefore it
does not provide strong signals on how to segment the continuous motion. Nevertheless,
the performance of HDCME is still rather competitive comparing to the previous methods,
especially for the JointLocation of torso, suggesting that the combination of the hierarchical
dynamic clustering and the motion energy based pooling is able to produce reliable human
motion segmentation results regardless the type of motions in the test sequence.

Method body part JointLocation RelativeAngle Quaternions

TSC [14] Torso 0.12/0.04/0.06 0.28/0.10/0.15 0.31/0.19/0.24
Arms 0.42/0.28/0.34 0.29/0.38/0.33 0.28/0.56/0.37

ACA [35] Torso 0.19/0.01/0.02 0.30/0.02/0.04 0.40/0.03/0.06
Arms 0.36/0.08/0.13 0.36/0.10/0.16 0.34/0.09/0.14

EMS [12] Torso 0.13/0.06/0.08 0.28/0.15/0.20 0.37/0.12/0.18
Arms 0.26/0.12/0.16 0.38/0.27/0.32 0.34/0.09/0.14

DC [32] Torso 0.46/0.15/0.21 0.34/0.12/0.18 0.40/0.26/0.32
Arms 0.49/0.30/0.37 0.27/0.64/0.38 0.33/0.68/0.44

HDCKC−S Torso 0.24/0.67/0.35 0.23/0.44/0.30 0.27/0.49/0.35
Arms 0.26/0.52/0.35 0.25/0.50/0.33 0.38/0.35/0.36

HDCKC−B Torso 0.32/0.54/0.40 0.23/0.52/0.32 0.29/0.64/0.40
Arms 0.44/0.45/0.44 0.26/0.72/0.38 0.44/0.46/0.45

HDCME Torso 0.42/0.54/0.47 0.24/0.45/0.31 0.23/0.39/0.29
Arms 0.37/0.41/0.39 0.30/0.32/0.31 0.31/0.35/0.37

Table 2: Comparison with the state-of-the-art on the TUMKitchen dataset. The results are
shown in the format of precision/recall/f-score. The best results are in boldface.
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Analysis of the hierarchical clustering framework. Our approach is motivated by
the observation that human motion can be decomposed at different temporal scales. With
merits of the robustness of dynamic clustering, it could reliably parse human motions despite
large variations of temporal scales of actions. To validate our hypothesis, we replace the
last dynamic clustering step in the framework (Figure 1) with either k-means or spectral
clustering, while retaining sliding window-based pooling. As shown in Figure 5 (a), the
proposed framework improves the baseline methods considerably.

0.13

0.29
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0.77

VGG

0.25
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Figure 5: Results are evaluated by the f-score. (a) Comparison of clustering methods to
parse torso motions in TUMKitchen, where SC and DC are spectral clustering and dynamic
clustering respectively. (b) Comparison of the temporal pooling schemes on CMUMAD,
where SW, KC-S, KC-B and ME denote the time sliding window, the sequential kernelized
cut, the batch kernelized cut and motion energy, respectively.

Analysis of the temporal pooling schemes. To validate the effectiveness of the pro-
posed temporal pooling methods, we further compare with the conventional dense sliding
window approach (SW) with an empirically optimal window size. As shown in Fig. 5 (b),
for various input features the proposed pooling methods consistently outperform the baseline
method by noticeable margins. Particularly, the average improvement of f-score made by the
motion-energy based pooling is 0.55, certifying our assumption that the motion energy term
could be informative and utilized for human motion parsing.

4.2 Abnormal behavior detection
Dataset. For abnormal behavior detection, we use the first scenario of BOMNI [3]. The
annotation of each video consists of the bounding box of the subject in each frame and
6 actions performed by the subject, which are sitting, walking, drinking, washing-hands,
opening-closing-door and fainting. Figure 6 shows ten example frames.

Evaluation metric & Input features. We use the accuracy to evaluate the detection
quality at the frame level, which is computed as the true positives divided by the number
of frames belonging to the fainting action in the ground truth. The true positives are de-
fined as the frames, which both belong to “novel” actions and the associated label (cluster
index) is the majority in the parsing result within the period of fainting. In our setting, a
“novel” action is regarded as a segment whose action label first appears along the temporal
dimension. For example, if we have a sequence of 6 frames with action labels (or cluster
indexes) {a,a,b,a,a,c}, the frames are annotated as {1,1,1,0,0,1} for the novel behavior
representation.
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Figure 6: Five frames of the first video in the BOMNI dataset. In each frame, the annotated
bounding box, the action label and the mask detected by Mask-RCNN [10] are presented.

We use the mask-RCNN model provided by [10] to extract the masks of the subjects,
since neither pose estimation nor context representation of the entire frame is reliable. Then
we resize the mask to patches of 40x40 of pixels, and perform distance transform following
[18]. The feature vector is derived via vectorizing the transformed mask.

Results. The results of our methods as well as other state-of-the-art parsing approaches
are shown in Table 3. One can see that HDCME is comparable with ACA and superior
to others. However, HDCME runs significantly faster than ACA. Since the motion-based
pooling mainly relies on processing the cluster indices, its computational load is considerably
smaller than other pooling methods which require to compute the data similarity matrix.
Also, comparing with dynamic programming used in ACA, subspace clustering used in TSC
and k-means used in DC, the dynamic clustering modules in HDC lead to faster computation.

Algorithm TSC [14] ACA [34] DC [32] HDCKC−S HDCKC−B HDCME
Accuracy 0.28 0.99 0.33 0.81 0.81 0.92
Runtime (second) 1.63 2.69 0.16 0.18 0.31 0.07

Table 3: The results on the BOMNI dataset. The best ones are in boldface.

5 Conclusion

In this paper we propose a hierarchical dynamic clustering framework to parse human mo-
tions in untrimmed sequences, which is inspired by the unsupervised bag-of-words feature
aggregation pipeline. To reliably cluster features with temporal structures, we employ dy-
namic clustering to create the codebook and group high-level action patterns. To obtain
accurate temporal durations of actions, we propose unsupervised temporal pooling methods
based on kernelized cut or motion energy. The experimental results demonstrate that our
approach out-performances the state-of-the-art.

We leave the following two questions for future studies: (1) Our current unsupervised
method uses the output produced by several feature extraction methods. It would be mean-
ingful to build an end-to-end approach by combining these two techniques together. (2)
Since unsupervised temporal pooling in untrimmed input sequences are not fully solved yet,
we plan to improve temporal pooling techniques as future work.
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