
Decentralized MPC based Obstacle Avoidance
for Multi-Robot Target Tracking Scenarios

Rahul Tallamraju1,3, Sujit Rajappa2, Michael J. Black1, Kamalakar Karlapalem3 and Aamir Ahmad1

Abstract— In this work, we consider the problem of decen-
tralized multi-robot target tracking and obstacle avoidance in
dynamic environments. Each robot executes a local motion
planning algorithm which is based on model predictive control
(MPC). The planner is designed as a quadratic program,
subject to constraints on robot dynamics and obstacle avoid-
ance. Repulsive potential field functions are employed to avoid
obstacles. The novelty of our approach lies in embedding these
non-linear potential field functions as constraints within a
convex optimization framework. Our method convexifies non-
convex constraints and dependencies, by replacing them as
pre-computed external input forces in robot dynamics. The
proposed algorithm additionally incorporates different methods
to avoid field local minima problems associated with using
potential field functions in planning. The motion planner does
not enforce predefined trajectories or any formation geometry
on the robots and is a comprehensive solution for cooperative
obstacle avoidance in the context of multi-robot target tracking.
We perform simulation studies for different scenarios to show-
case the convergence and efficacy of the proposed algorithm.

I. INTRODUCTION

Multi-robot cooperative target tracking has been researched
extensively in recent years [1]–[5]. Target here refers to a
movable subject of interest in the environment, e.g., human,
animal or other robot. Cooperative target tracking methods
focus on improving the estimated pose of a tracked target
while simultaneously enhancing the localization estimates
of poorly localized robots, e.g., [1], by fusing the state
estimate information acquired from team mate robots. The
general modules involved in decentralized multi-robot target
tracking are summarized in Fig. 1. Our work focuses on
the modules related to obstacle avoidance (blue in Fig. 1).
The other related modules (green in Fig. 1), such as target
pose estimation, are assumed to be available (see [6]). The
developed obstacle avoidance module fits into any general
cooperative target tracking framework as seen in Fig. 1.
Robots involved in tracking a desired target must not collide
with each other and also with other entities (human, robot or
environment). While addressing this problem, the state-of-art
methodologies for obstacle avoidance in the context of coop-
erative target tracking have drawbacks. In [7], [8] obstacle
avoidance is imposed as part of the weighted MPC based
optimization objective, thereby providing no possibility of
guaranteed avoidance. In [1] obstacle avoidance is a separate
planning module, which modifies the generated optimization
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Germany, 3Agents and Applied Robotics Group, IIIT Hyderabad, India.

Low-level Position
controller module 

EKF-based
Self-localization

module

MPC-based 
formation controller

and obstacle avoidance
module

Target Pose Detector
(e.g., vision-based CNN 
or laser measurements)

Target Pose Estimator
(e.g., Kalman Filter, PF)

Cooperative detection and 
tracking module

Target Detection measurements 
(mean +  noise 

covariance matrix)

Bias correction

Predicted target poses

Target pose estimate

Robot Self-pose estimate 

Waypoint
commands

Motion 
update

Robotk+1

Robotk

Robotk-1

Target Detection 
measurements
from teammate

robots

Teammates robot pose estimates 

S
e
lf-

p
o
se

 e
st

im
a
te

 +
Ta

rg
e
t 

D
e
te

ct
io

n
 m

e
a
su

re
m

e
n
ts

 

Static obstacles position estimates
 (using exteroceptive sensors)

Fig. 1: General modules involved in multi-robot target tracking. Our work focuses on
the modules highlighted in blue.

trajectory using potential fields. This leads to a sub-optimal
trajectory and field local minima.
The goal of this work is to provide a holistic solution
to the problem of obstacle avoidance, in the context of
multi-robot target tracking in an environment with static
and dynamic obstacles. Our solution is an asynchronous
and decentralized model-predictive control based convex
optimization framework. Instead of directly using repulsive
potential field functions to avoid obstacles, we convexify
the potential field forces by replacing them as pre-computed
external input forces in robot dynamics. A feasible solution
for the optimization program ensures obstacle avoidance.
However, field local minima issues may remain. In our
proposed solution we present three methods to resolve it and
facilitate convergence to a desired surface around the target.
The main contributions of this work are,
• Fully convex optimization for local motion planning in

the context of multi-robot target tracking, by handling
non-convex constraints as pre-computed input forces in
robot dynamics,

• static and dynamic obstacle avoidance through an asyn-
chronous, decentralized and scalable method; and

• methodologies for field local minima avoidance.
Sec. II details the state-of-art methods related to obstacle
avoidance. Sec. III discusses the decentralized quadratic
model predictive controller and the proposed methodologies
to solve the field local minima and control deadlock problem.
Sec. IV describes the simulation results in different scenarios.
We conclude in Sec. V with comments on future work.

II. STATE-OF-THE-ART

The main goal in this work is to develop a decentralized
multi-robot target tracker and collision free motion planner in
obstacle (static and dynamic) prone environments. The multi-
agent obstacle avoidance problem has gained a lot of atten-
tion in recent years. Single agent obstacle avoidance, motion



planning and control is well studied [9], [10]. However, the
multi-agent obstacle avoidance problem is more complex due
to motion planning dependencies between different agents,
and the poor computational scalability associated with the
non-linear nature of these dependencies. In general, local
collision free trajectory generation for multi-agents can be
classified into, (i) reactive and (ii) optimization based ap-
proaches. Many reactive approaches are based on the concept
of velocity obstacle (VO) [11], whereas, optimization based
approaches avoid obstacles by embedding collision con-
straints (like VO) within cost function or as hard constraints
in optimization. Recently, a mixed integer quadratic program
(MIQP) in the form of a centralized non-linear model pre-
dictive control (NMPC) [12] has been proposed for dynamic
obstacle avoidance, where feedback linearization is coupled
with a variant of the branch and bound algorithm. However,
this approach suffers with agent scale-up, since increase
in binary variables of MIQP has an associated exponential
complexity. In general, centralized optimization approaches
[13], [14] are not computationally scalable with increase
in number of agents. In [15], a decentralized convex op-
timization for multi-robot collision-free formation planning
through static obstacles is studied. This approach involves,
triangular tessellation of the configuration space to convexify
static obstacle avoidance constraints. Tessellated regions are
used as nodes in a graph and the paths between the cells are
determined to guarantee obstacle avoidance. A decentralized
NMPC [16] has been proposed for pursuit evasion and static
obstacle avoidance with multiple aerial vehicles. Here the
optimization is constrained by non-linear robot dynamics,
resulting in non-convexity and thereby affecting the real-time
NMPC performance. Additionally, a potential field function
is also used as part of a weighted objective function for
obstacle avoidance. A similar decentralized NMPC has been
proposed for the task of multiple UAVs formation flight [17].
Sequential convex programming (SCP) has been applied to
solve the problems of multi-robot collision-free trajectory
generation [18], trajectory optimization and target assign-
ment [19] and formation payload transport [20]. These
methodologies principally approximate and convexify the
non-convex obstacle avoidance constraints, and iteratively
solve the resulting convex optimization problem until fea-
sibility is attained. Due to this approximation, the obtained
solutions are fast within a given time-horizon, albeit sub-
optimal. SCPs have been very effective in generating real-
time local motion plans with non-convex constraints. Recent
work in multi-agent obstacle avoidance [21] builds on the
concept of reciprocal velocity obstacle [22], where a local
motion planner is proposed to characterize and optimally
choose velocities that do not lead to a collision. The approach
in [21] convexifies the velocity obstacle (VO) constraint to
guarantee local obstacle avoidance.
In summary, due to non-linear dynamics constraints or
obstacle avoidance dependencies, most multi-robot obstacle
avoidance techniques are either, (i) centralized, (ii) non-
convex, or (iii) locally optimal. Furthermore, some ap-
proaches only explore the solution space partially due to

constraint linearization [21]. Current NMPC target tracking
approaches using potential fields do not provide possibilities
of deriving guarantees on obstacle avoidance and are linked
with the field local-minima problem. Reinforcement learning
solutions [23], [24] require large number of training scenarios
to determine a policy and also do not guarantee obstacle
avoidance.
Our work generates collision-free motion plans for each
agent using a convex model-predicitive quadratic program
in a decentralized manner. This approach ensures obstacle
avoidance and facilitates global convergence to a target
surface. Our approach creates a possibility of deriving guar-
antees for obstacle avoidance by controlling the radius of
obstacle potential field. To the best of our knowledge, the
method of using tangential potential field functions [25]
to generate different reactive swarming behaviors including
obstacle avoidance, is most similar to our approach. However
in [25], the field local minima is persistent in the swarming
behaviors.
Unlike previous NMPC based target tracking approaches
which use potential fields in the objective, here we use
potential field forces as constraints in optimization. However,
the non-linear potential field functions are not directly used
as constraints in optimization. Instead, potential field forces
are pre-computed for a horizon using the horizon motion
trajectory of neighboring agents and obstacles in the vicinity.
A feasible solution of the optimization program ensures
obstacle avoidance. The pre-computed values are applied
as external control input forces in the optimization process
thereby preserving the overall convexity.

III. PROPOSED APPROACH

A. Preliminaries

We describe the proposed framework for a multi-robot sys-
tem tracking a desired target. For the concepts presented,
we consider Micro Aerial Vehicles (MAVs) that hover at
a pre-specified height hgnd . Furthermore, we consider 2D
target destination surface. However, the proposed approaches
can be extended to any 3D surface. Let there be K MAVs
R1, ...,RK tracking a target xP

t , typically a person P. Each
MAV computes a desired destination position x̌Rk

t in the
vicinity of the target position. The pose of kth MAV in the
world frame at time t is given by ξ

Rk
t = [(xRk

t )> (Θ
Rk
t )>] ∈

R6. Let there be M obstacles in the environment O1, ...,OM .
The M obstacles include Rk’s neighboring MAVs and other
obstacles in the environment.
The key requirements in a multi-robot target tracking sce-
nario are, (i) to not lose track of the moving target, and (ii)
to ensure that the robots avoid other agents and all obstacles
(static and dynamic) in their vicinity. In order to address both
these objectives in an integrated approach, we formulate a
formation control (FC) algorithm, as detailed in Algorithm
1. The main steps are, (i) destination point computation
depending on target movement, (ii) obstacle avoidance force
generation, (iii) decentralized quadratic model predictive
control (DQMPC) based planner for way point generation,
and (iv) a low-level position controller.



To track the waypoints generated by the MPC based planner
we use a geometric tracking controller. The controller is
based on the control law proposed in [26], which has a
proven global convergence, aggressive maneuvering control-
lability and excellent position tracking performance. Here,
the rotational dynamics controller is developed directly on
SO(3) thereby avoiding singularities that may arise in local
coordinates. Since the MAVs used in this work are under-
actuated systems, the desired attitude generated by the outer-
loop translational dynamics is controlled by means of the
inner-loop torques.

B. DQMPC based Formation Planning and Control

The goal of the formation control algorithm running on each
MAV Rk is to

1) Hover at a pre-specified height hgnd .
2) Maintain a distance dRk to the tracked target.
3) Orient at yaw ψRk , directly facing the tracked target.

Additionally, MAVs must adhere to the following constraints,
1) To maintain a minimum distance dmin from other MAVs

as well as static and dynamic obstacles.
2) To ensure that MAVs respect the specified state limits.
3) To ensure that control inputs to MAVs are within the

pre-specified saturation bounds.

Algorithm 1 MPC-based formation controller and obstacle
avoidance by MAV Rk with inputs {xP

t , xO j
t ; j = 1 : M}

1: {x̌Rk
t }← Compute Destination Position {ψRk

t ,xP
t ,d

Rk ,hgnd}
2:
[
fRk
t (0), . . . , fRk

t (N)
]
← Obstacle Force {xRk

t ,xO j
t (1 : N +1),∀ j}

3: {xRk∗
t , ẋRk∗

t ,∇JDQMPC}← DQMPC{x̌Rk
t ,xRk

t , fRk
t (0 : N),g}

4: {ψRk
t+1}← Compute Desired Yaw {xRk

t ,xP
t ,‖∇JDQMPC‖}

5: Transmit xRk∗
t (N+1), ẋRk∗

t (N+1),ψRk
t+1 to Low-level Controller

Algorithm 1 outlines the strategy used by each MAV Rk at
every discrete time instant t. In line 1, MAV Rk computes
its desired position x̌Rk

t on the desired surface using simple
trigonometry. For example, if the desired surface is a circle,
centered around the target location xP

t with a radius dRk =
constant ∀Rk, then the desired position for time instant t

is given by x̌Rk
t = xP

t +
[
dRk cos(ψRk

t ) dRk sin(ψRk
t ) hgnd

]>
.

Here ψ
Rk
t is the yaw of Rk w.r.t. the target. It is important to

note that the distance dRk is an input to the DQMPC and is
not necessarily the same for each MAV.
In our implementation we operate under perfect sensing and
communication assumptions. In line 2, an input potential

field force vector
[
fRk
t (0), . . . , fRk

t (N)
]>
∈ R3×(N+1) is com-

puted for a planning horizon of (N+1) discrete time steps by
using the shared trajectories from other MAVs and positions
of obstacles in the vicinity. For obstacles, the instantaneous
position based potential field force value is used for the entire
horizon. Section III-C details the numerical computation of
these field force vectors.
In line 3, an MPC based planner solves a convex op-
timization problem (DQMPC) for a planning horizon of

(N + 1) discrete time steps. We consider nominal acceler-
ations [uRk

t (0) · · ·uRk
t (N)]> ∈ R3×(N+1) as control inputs to

DQMPC. uRk
t (n) = ẍRk

t (n) describes the 3D translational
motion of Rk, where n is the current horizon step.
The state vector of the discrete-time DQMPC consists of
Rk’s position xRk

t (n) ∈ R3 and velocity ẋRk
t (n) ∈ R3. The

optimization objective is,

JDQMPC =
( N

∑
n=0

(
ΩΩΩi(u

Rk
t (n)+ fRk

t (n)+ggg)2)+
ΩΩΩt
([

xRk
t (N +1)> ẋRk

t (N +1)>
]
−
[
(x̌Rk

t )> 0>
])2
)

(1)

The optimization is defined by the following equations.

x(1)Rk∗
t . . .x(N +1)Rk∗

t ,uRk∗
t (0) . . .uRk∗

t (N) = arg min
uRk

t (0)...uRk
t (N)

(JDQMPC) (2)

subject to,[
xRk

t (n+1)> ẋRk
t (n+1)>

]>
=

A
[
xRk

t (n)> ẋRk
t (n)>

]>
+B(uRk

t (n)+ fRk
t (n)+ggg), (3)

umin ≤ uRk
t (n)≤ umax, (4)

xmin ≤ xRk
t (n)≤ xmax, (5)

ẋmin ≤ ẋRk
t (n)≤ ẋmax (6)

where, ΩΩΩi and ΩΩΩt are positive definite weight matrices for
input cost and terminal state (computed desired position x̌Rk

t
and desired velocity ˙̌xRk

t = 0) respectively, fRk
t (n) is the pre-

computed external obstacle force, ggg is the constant gravity
vector. The discrete-time state-space evolution of the robot is
given by (3). The dynamics (A ∈R3×3) and control transfer
(B ∈ R3×3) matrices are given by,

A =

[
I3 ∆tI3
03 I3

]
, B =

[
∆t2

2 I3
∆tI3

]
. (7)

where, ∆t is the sampling time. The quadratic
program generates optimal control inputs[
uRk

t (0) · · ·uRk
t (N)

]
and the corresponding trajectory[

xRk
t (1) ẋRk

t (1) · · ·xRk
t (N +1) ẋRk

t (N +1)
]

towards the
desired position. The final predicted position and velocity of
the horizon xRk∗

t (N+1), ẋRk∗
t (N+1) is used as desired input

to the low-level flight controller. The MPC based planner
avoids obstacles (static and dynamic) through pre-computed
horizon potential force fRk

t (n). This force is applied as an
external control input component to the state-space evolution
equation, thereby, preserving the optimization convexity.
Previous methods in literature consider non-linear potential
functions within the MPC formulation, thereby, making
optimization non-convex and computationally expensive.
In the next step (line 4 of Algorithm 1), the desired yaw is

computed as ψ
Rk
t+1 = atan2

( yP
t −y

Rk
t

xP
t −x

Rk
t

)
. This describes the angle

with respect to the target position xP
t from the MAV’s current

position xRk
t . The way-point commands consisting of the

position and desired yaw angle are sent to the low-level flight
position controller. Although no specific robot formation
geometry is enforced, the DQMPC naturally results in a
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Fig. 2: Illustration of the field local minima problem in obstacle avoidance and different proposed methods.

dynamic formation depending on desired destination surface.

C. Handling Non-Convex Collision Avoidance Constraints

In our approach, at any given point there are two forces
acting on each robot, namely (i) the attractive force due
to the optimization objective (eq.(2)), and (ii) the repulsive
force due to the potential field around obstacles (fRk

t (n)).
The repulsive potential field force variation is modeled as
a hyperbolic function (F

Rk,O j
hyp (d(n))) of distance between

MAV Rk and obstacle O j. We use the formulation in [27] to
model F

Rk,O j
hyp (d(n)). Here, d(n) = ‖xRk

t−1(n)−xO j
t (n)‖2, ∀n∈

[0, . . . ,N] is the distance between the MAV’s predicited
horizon positions from the previous time step (t − 1) and
the obstacles (which includes shared horizon predictions of
other MAVs). The repulsive force vector is,

FFF
Rk,O j
rep (n) =

{
F

Rk,O j
hyp (d(n)) α, if d(n)< dsa f e

0, if d(n)> dsa f e
, (8)

where, dsa f e is the distance from the obstacle where the

potential field magnitude is non-zero. α =
x

O j
t (n)−xRk

t−1(n)

‖x
O j
t (n)−xRk

t−1(n)‖2
is the unit vector in the direction away from the obstacle.
Additionally, we consider a distance dmin << dsa f e around
the obstacle, where the potential field magnitude tends to
infinity. The repulsive force acting on an agent at step n is,

fRk
t (n) = ∑

∀ j
FRk,O j

rep (n), (9)

which is added into the system dynamics in eq.(3).

D. Resolving the Field Local Minima Problem

The key challenge in potential field based approaches is
the field local minima issue [28]. When the summation of
attractive and repulsive forces acting on the robot is a zero
vector, the robot encounters field local minima problem 1.
Equivalently, a control deadlock could also arise when the
robot is constantly pushed in the exact opposite direction.
Both local minima and control deadlock are undesirable
scenarios. From equation (3) and Algorithm 1, it is clear
that the optimization can characterize control inputs that will
not lead to collisions, but, cannot characterize those control
inputs that lead to these scenarios. In such cases, the gradient

1note that this is different from optimization objective’s local minima.

of optimization would be non-zero, indicating that the robot
knows its direction of motion towards the target but cannot
reach the destination surface as the potenial field functions
are not directly used in DQMPC constraints. We propose
three methodologies for field local minima avoidance.
1) Swivelling Robot Destination (SRD) method: This
method is based on the idea that the MAV destination x̌Rk

t is
an external input to the optimization. Therefore, each MAV
can change its x̌Rk

t to push itself out of field local minima.
For example, consider the scenario shown in Fig. 2(a), where
three robots are axially aligned towards the target. Since
the angles of approach are equal, the desired destination
positions are the same for R1 and R2, i.e., x̌R1

t = x̌R2
t . This

results in temporary deadlock and will slow the convergence
to desired surface. We construct the SRD method to solve
this deadlock problem as follows: (i) the gradient of DQMPC
objective of Rk is computed, (ii) a swivelling velocity ωRk

is calculated based on the magnitude of gradient, and (iii)
x̌Rk

t swivels by a distance proportional to ωRk as shown
in Fig.2(b). This ensures that the velocities at which each
x̌Rk

t swivels is different until the robot reaches the target
surface, where the gradient tends to zero. The gradient of
the optimization with respect to the last horizon step control
and state vectors, is computed as follows.

∂JDQMPC

xRk
t (N +1)

= 2ΩΩΩt(
[
xRk

t (N +1)> (ẋRk
t (N +1))>

]
−
[
(x̌Rk

t )> 0>
]
)>

∂JDQMPC

uRk
t (N)

= 2ΩΩΩi(u
Rk
t (n)+ fRk

t (n)+ggg)+2ΩΩΩt B(x
Rk
t (N +1)− x̌Rk

t )

∇JRk
DQMPC =

∂JDQMPC

xRk
t (N +1)

+
∂JDQMPC

uRk
t (N)

. (10)

For a circular target surface, destination point swivel rate is,

x̌Rk
t = xP

t +

dRk cos(ψRk
t ± ks‖∇JRk

DQMPC‖)
dRk sin(ψRk

t ± ks‖∇JRk
DQMPC‖)

hgnd


>

(11)

where, ks is a user-defined gain controlling the impact of
‖∇JRk

DQMPC‖. The swivel direction of each Rk is decided by
its approach direction to target. Positive and negative ψ

Rk
t

leads to a clockwise and anti-clockwise swivel respectively.
2) Approach Angle Towards Target Method: In this method,
the local minima/control deadlock is addressed by including
an additional repulsive force, which varies as a function of



robot’s approach angle to the target. Here, we (i) compute
the approach angle of robot Rk w.r.t. the target, (ii) compute
the gradient of the objective, and (iii) compute a force F

Rk,O j
ang

in the direction normal to the angle of approach, as shown
in Fig. 2(c). The magnitude of F

Rk,O j
ang depends on the sum

of gradients ∇JRk
DQMPC and the hyperbolic function (see Sec.

III-C) between the approach angles of robot Rk and obstacles
O j w.r.t. the target. This potential field force is computed as,

FRk,O j
ang (n) = ∇JRk

DQMPC F
Rk,O j
hyp ((θ Rk(n)−θ

O j(n))2)β̂ ∀ j
(12)

β =± xRk
t (n)− x̌Rk

t

‖xRk
t (n)− x̌Rk

t ‖2
; β̂ .β = 0. (13)

Here θ Rk(n) and θ O j(n) are the angles of Rk and obstacle
O j with respect to the target. The angles θ O j ∀ j w.r.t
target are computed by each Rk, as part of the force pre-
computation using O j’s position. β and β̂ are the unit vectors
in the approach direction to the target and its orthogonal
respectively, with ± dependent on θ Rk w.r.t. the target. The
fRk
t (n) for nth horizon step is therefore

fRk
t (n) = ∑

∀ j
FRk,O j

rep (n)+FRk,O j
ang (n). (14)

Notice that the non-linear constraint of the two approach
angles not being equal is converted into an equivalent convex
constraint using pre-computed force values. This method
ensures collision avoidance in the presence of obstacles
and fast convergence to the desired target, because the net
potential force direction is always away from the obstacle.

3) Tangential Band Method: Both aforementioned methods,
at times, do not facilitate target surface convergence. For
e.g., static obstacles forming a U-shaped boundary between
the target surface and Rk’s position, as shown in Fig.2(d).
If the target surface is smaller than the projection of a
static obstacle along the direction of approach to the desired
surface, the planned trajectory is occluded. Therefore, the
SRD method cannot find a feasible trajectory. Furthermore,
approach angle field acts only when the θ Rk and θ O j are
similar w.r.t. the target. To resolve this, we construct a band
around each obstacle where an instantaneous (at n = 0)
tangential force acts about the obstacle center. Width of this
band is > (ẋ>max∆t+umax

∆t2

2 ) and therefore, the robot cannot
tunnel out of this band within one time step ∆t. Therefore,
once the robot enters the tangential band, it exits only after
it has overcome the static obstacle. The direction depends
on Rk’s approach towards the target, resulting in clockwise
or anti-clockwise force based on −ve or +ve value of ψ

Rk
t

respectively. Outer surface of the band only has the tangential
force effect, while the inner surface has both tangential and
hyperbolic repulsive force effects. Within the band, diagonal
entries of the positive definite weight matrix ΩΩΩt are reduced
to a very low value (≺≺ Ωt,max). This ensures that the
attraction field on the robot is reduced in the presence of
repulsive fields. Consequently, the effect of tangential force
is higher in the presence of obstacles. Once the robot clears
the U-shaped obstacle, the high weight of the ΩΩΩt is restored
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Fig. 3: MAV trajectories and optimization gradients of baseline DQMPC optimization.
The colors (red, green, blue, black, magenta) represent Rks and their respective
gradients.

to ensure robot converge to desired destination surface. Fig.
2(d) illustrates this method. The tangential force is,

FRk,O j
tang (0) = ktang∇JRk

DQMPC α̂, (15)

where ktang is user-defined gain and α̂ is defined s.t. ± α̂.α =
0. The weight matrix and horizon step potential are therefore,

ΩΩΩt = ΩΩΩt,min, if xRk
t ≤ d(0)+dband (16)

fRk
t (n) = ∑

∀ j
FRk,O j

rep (n)+FRk,O j
tang (0) , (17)

where dband is the tangential band width. The values of
weights can vary between ΩΩΩt,min ≺ΩΩΩt ≺ΩΩΩt,max and change
only when the robot is within the influence of an obstacle
tangential field. In summary, the tangential band method not
only ensures collision avoidance for any obstacles but also
facilitates robot convergence to the target surface. In rare
scenarios, e.g., when the static obstacle almost encircles the
robots and if the desired target surface is beyond such an
obstacle, the robots could get trapped in a loop within the
tangential band. This is because a minimum attraction field
towards the target always exists. Since in this work, the
objective is local motion planning in dynamic environments
with no global information and map, we do not plan for a
feasible trajectory out of such situations.

IV. RESULTS AND DISCUSSIONS

In this section, we detail the experimental setup and the
results of our DQMPC based approach along with the field
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Fig. 4: MAV trajectories and optimization gradients of swivelling destination method.

local minima resolving methods proposed in Sec. III for
obstacle avoidance and reaching the target surface.

A. Experimental Setup

The algorithms were simulated in a Gazebo+ROS integrated
environment to emulate the real world physics and enable a
decentralized implementation for validation of the proposed
methods. The setup runs on a standalone Intel Xeon E5-2650
processor. The simulation environment consists of multiple
hexarotor MAVs confined in a 3D world of 20m× 20m×
20m. All the experiments were conducted using multiple
MAVs for 3 different task scenarios involving simultaneous
target tracking and obstacle avoidance namely,
• Scenario I: 5 MAVs need to traverse from a starting

surface to destination surface without collision. Each
agent acts as a dynamic obstacle to every other MAV.

• Scenario II: 2 MAVs hover at certain height and act
as static obstacles. The remaining 3 MAVs need to
reach the desired surface avoiding static and dynamic
obstacles.

• Scenario III: 4 MAVs hover and form a U-shaped static
obstacle. The remaining MAV must reach destination
while avoiding field local minima and control deadlock.

It may be noted that in all the above scenarios, the target’s po-
sition is drastically changed from initial to final destination.
This is done so as to create a more challenging target tracking
scenario than simple target position transitions. Furthermore,
the scalability and effectiveness of the proposed algorithms
are verified by antipodal position swap of 8 MAVs within a
surface. The MAVs perform 3D obstacle avoidance to reach

their respective positions while ensuring that the surface
center (target) is always in sight.
The convex optimization (2)-(6) is solved as a quadratic
program using CVXGEN [29]. The DQMPC operates at a
rate of 100 Hz. The state and velocity limits of each MAV
Rk are [−20,−20,3]> ≤ xRk

t (n) ≤ [20,20,10]> in m and
[−5,−5,−5]> ≤ ẋRk

t (n) ≤ [5,5,5]> in m/s respectively,
while the control limits are [−2,−2,−2]>≤ uRk

t (n)≤ [2,2,2]
in m/s2. The desired hovering height of each MAV is hgnd =
5m and the yaw ψRk of each MAV is oriented towards
the target. The horizon N for the DQMPC and potential
force computation is 15 time steps each. It is important to
mention that if no trajectory information is available for an
obstacle or adversary O j, the n = 0 magnitude of potential
field (F

Rk,O j
rep (0)) is used for the entire horizon. dmin = 0.5m

and dsa f e = 3m for the potential field around obstacles. The
destination surface is circular, with radius dRk = 4m ∀k,
around the target for all experiments. However, as stated
earlier our approach can attain any desired 3D surface.

B. DQMPC: Baseline Method

Figure 3 showcases the multi-robot target tracking results for
the three different scenarios (see Sec. IV-A) while applying
the baseline DQMPC method. We observe in Fig. 3(a,c),
that the agents find obstacle free trajectories from starting
to destination surface for the scenarios I and II. This is also
indicated by the magnitude of gradient dropping close to
0 after 40s and 30s respectively as seen in Fig. 3(b,d). The
rapidly varying gradient curve of Scenario I (Fig. 3(b)) shows
that, each agent’s potential field pushes other agents to reach
the destination surface. In the U-shaped static obstacle case
(scenario III), the agent is stuck because of control deadlock
and fails to reach the destination surface as seen in Fig. 3(e).
The periodic pattern of the gradient curve (Fig. 3(f)) and
non-zero gradient magnitude makes the deadlock situation
evident. Most of these scenarios can also be visualized in
the attached video submission.

C. Swivelling Robot Destination Method

In the swivelling destination method, we use ks = 0.05 as
the gain for gradient magnitude impact. Fig. 4(a) shows, the
MAVs spreading themselves along the destination surface
depending on their distance from target and therefore the
gradient. This method has a good convergence time of about
12s and 15s (about 3 times faster than the baseline DQMPC)
for the scenarios I and II as can be observed in Fig. 4(b) and
Fig. 4(d) respectively. Here, the direction of swivel depends
on the agents orientation w.r.t. to target and each agent takes a
clockwise or anti-clockwise swivel based on its orientation as
clearly seen in Fig. 4(c). The positive and negative values of
the gradient indicate the direction. It can be observed in Fig.
4(c), that the agent at times crosses over the dsa f e because of
the higher target attraction force but respects the dmin where
the repulsion force is infinite. Despite the better convergence
time, the MAV is stuck when encountered with a U-shaped
static obstacle (Fig. 4(e)) because of a control deadlock. This
can also be observed with the non-zero gradient in Fig. 4(f).
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Fig. 5: MAV trajectories and optimization gradients of approach angle force.

D. Approach Angle Towards Target Method

Fig. 5 showcases the results of the approach angle method.
The additional potential field force enforces that not more
than one agent has the same approach angle. The MAVs
spread themselves while approaching the destination surface.
This is associated with fast convergence as observed in Fig.
5(a-d), for the scenarios I and II. Direction of approach
angles depends on the orientation of MAVs w.r.t. to the
target and is also indicated by the positive and negative
values of the gradient magnitude. From the many experi-
ments conducted for different scenarios, we observed that
this method has the smoothest transition to the destination
surface. However, the method fails to overcome control
deadlock in case of a U-shaped obstacle (see Fig. 5(e,f)).

E. Tangential Band Method

Using the tangential band method, MAVs reach the desti-
nation surface in all the scenarios as seen in Fig. 6. This
method facilitates convergence to the target, for complex
static obstacles, because, by principle the MAV traverses
within the band until it finds a feasible path towards the
target surface. ktang = 2 was used in simulations. As seen in
Fig. 6(e), as soon as the MAV reaches obstacle surface, the
tangential force acts, pushing it in the anti-clockwise direc-
tion. MAV travels within this band until it is finally pulled
towards the destination surface. The same principle applies
for dynamic obstacles scenarios (see Fig. 6(a,c)) as well.
Since the MAV overcomes field local minima and control
deadlock, the gradient reaches 0 for the U-shaped obstacle
with a convergence time of 12 seconds, (see Fig. 6(f)).
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Fig. 6: MAV trajectories and optimization gradients of tangential band method.
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F. Convergence Time Comparison

Figure 7 compares the average convergence time Tcvg for
each of the proposed methods for 3 trials, with approxi-
mately equal travel distances between starting and destination
surface for the different scenarios mentioned in Sec. IV-A.
Tcvg for swivelling destination, approach angle and tangential
band is approximately (15s), which is better compared to
DQMPC in the scenarios of only dynamic (Scenario I) or
simple static (Scenario II) obstacles. In the U-shaped obstacle
(Scenario III), except tangential band the other methods get
stuck in field local minima. In summary, the tangential band
method would be the most preferred choice when the type
of obstacles in environment are unknown.

G. Antipodal Movement

In order to further emphasize the efficacy of tangential band
and approach angle methods, we demonstrate obstacle avoid-
ance for a task of intra-surface antipodal position swapping.
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Fig. 8: Robot trajectories during antipodal position swapping.

Here 8 MAVs start on a circular surface with a radius of
8m, at equal angular distance from each other w.r.t. the
center (world frame origin [0,0,0]>). The MAVs must reach
a point 180o in the opposite direction while simultaneously
maintaining their orientation towards the center. The plot
in Fig. 8 (a) shows the trajectories taken by MAVs in
this task using the approach angle method. All the MAVs
convergence to their antipodal positions in around Tcvg = 13s.
It may be noted that there is no trajectory specified and
the MAVs compute their own optimal motion plans. To
improve the convergence time in this scenario, a consistent
clockwise direction is enforced, but this is not necessary
and convergence is ensured either way. The video attach-
ment visually showcases this antipodal movement. Similarly,
the antipodal position swapping was carried out using the
tangential band method with the same experimental criteria
(see figure in Fig. 8 (b)). A convergence time of around
Tcvg = 11s was observed, further emphasizing the speed of
obstacle avoidance and convergence of the proposed method.

V. CONCLUSIONS AND FUTURE WORK

In this work, we successfully address the problem of obstacle
avoidance in the context of decentralized multi-robot target
tracking. Our algorithm uses convex optimization to find
collision free motion plans for each robot. We convexify the
obstacle avoidance constraints by pre-computing the poten-
tial field forces for a horizon and using them as external force
inputs in optimization. We show that non-linear dependencies
could be converted into such external forces. We validate
three methods to avoid field local minima by embedding ex-
ternal forces into the convex optimization. We showcase the
efficacy of our solution through gazebo+ROS simulations for
various scenarios. Future work involves physically validating
the proposed methodology using moving targets and multiple
real robots on different robot platforms (aerial and ground).
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