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Abstract

Although facial feature detection from 2D images is a
well-studied field, there is a lack of real-time methods that
estimate feature points even on low quality images. Here we
propose conditional regression forest for this task. While
regression forest learn the relations between facial image
patches and the location of feature points from the entire
set of faces, conditional regression forest learn the relations
conditional to global face properties. In our experiments,
we use the head pose as a global property and demonstrate
that conditional regression forests outperform regression
forests for facial feature detection. We have evaluated the
method on the challenging Labeled Faces in the Wild [20]
database where close-to-human accuracy is achieved while
processing images in real-time.

1. Introduction
Due to its relevance for many applications like human

computer interaction or face analysis, facial feature point
detection is a very active area in computer vision [1, 3,
24, 25, 29]. Recent state-of-the-art methods like [3] have
reported impressive results where localization accuracy of
human annotators has been achieved on images of medium
quality. However, most of the available methods do not
achieve real-time performance which is a requirement for
many applications. Furthermore, low quality images still
challenge state-of-the-art algorithms.

In recent years, regression forests [4] have proven to be a
versatile tool for solving challenging computer vision tasks
efficiently. In this domain, regression forests learn a map-
ping from local image or depth patches to a probability over
the parameter space, e.g., the 2D position or the 3D orien-
tation of the head. While related Hough forests [16] detect
objects in 2D images efficiently, real-time methods for pose
estimation [12, 17] rely on depth data and an abundance of
synthetic training data.

In this work, we present a method based on regression
forests that detects 2D facial feature points in real-time as
exemplified by Fig. 1. Since regression forests learn the

Figure 1. Our approach estimates facial feature points from 2D
images in real-time.

spatial relations between image patches and facial features
from the complete training set and average the spatial dis-
tributions over all trees in the forest, the forests tend to in-
troduce a bias to the mean face. This is very problematic
for facial feature detection since subtle deformations affect
only the image appearance in the neighborhood of a specific
feature point. In order to steer the impact of patches close to
a facial feature, which adapt better to local deformations but
are more sensitive to occlusions, and more distant patches
that favor the mean face, we introduce an objective function
that allows to find a good trade-off.

Another contribution of this work is the introduction of
conditional regression forests. In general, regression forests
aim to learn the probability over the parameter space given
a face image from the entire training set, where each tree
is trained on a randomly sub-sampled training set to avoid
over-fitting. Conditional regression forests aim to learn sev-
eral conditional probabilities over the parameter space in-
stead. The motivation is that conditional probabilities are
easier to learn since the trees do not have to deal with all
facial variations in appearance and shape. Since some vari-
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ations depend on global properties of the face like the head
pose, we can learn the trees conditional to the global face
properties. During training, we also learn the probability
of the global properties to model the full probability over
the parameter space. During testing, a set of pre-trained
conditional regression trees is selected based on the esti-
mated probability of the global properties as illustrated in
Fig. 2. For instance, having trained regression trees con-
ditional to various head poses, the probability of the head
pose is estimated from the image and the corresponding
trees are selected to predict the facial features. In this way,
the trees that are selected for detecting facial features might
vary from image to image.

In our experiments, we demonstrate the benefit of con-
ditional regression forests and evaluate the method on
the challenging Labeled Faces in the Wild [20] database,
achieving close-to-human accuracy while processing im-
ages in real-time.

2. Related Work
Facial feature detection from 2D images is a well-studied

problem, especially as a preprocessing step for face recog-
nition. Earlier works can be classified into two categories,
depending on whether they use holistic or local features.

Holistic methods, e.g., Active Appearance Models [2, 5,
7], use the texture over the whole face region to fit a linear
generative model to a test image. Such algorithms suffer
from lighting changes, modeling complexity, and a bias to-
wards the average face. Moreover, these methods perform
poorly on unseen identities [18] and deal poorly with low-
resolution images.

In recent years, there has been a shift towards methods
based on independent local detectors. Such detectors are
discriminative models of image patches centered around the
facial landmarks, often combined by enforcing a prior over
their joint position. Vukadinovic and Pantic [31] train in-
dependent GentleBoost detectors for 20 facial points using
Gabor filters’ responses. Even though each point is local-
ized within a limited face region, the lack of a global shape
model can lead to non-plausible facial configurations. More
in general, local detectors are ambiguous: the limited sup-
port region can not cope with the large appearance varia-
tions present in the training samples. To improve accuracy
and reduce the influence of wrong detections, global infor-
mation about the face configuration is commonly used.

In the seminal work of [6], Active Shape Models use
a linear Point Distribution Model (PDM) constructed from
aligned training shapes, driven to fit a new image thanks
to simple models of the appearance along profiles centered
on each landmark. Some extensions to the ASM algorithm
were proposed, mainly focusing on improving the local de-
tectors. For example, Constrained Local Models [9] use
PCA to model the landmarks’ appearance, while Boosted

Conditional Regression Forest Regression Forest

Training

Figure 2. While a regression forest is trained on the entire train-
ing set and applied to all test images, a conditional regression for-
est consists of multiple forests that are trained on a subset of the
training data illustrated by the head poses (colored red, yellow,
green). When testing on an image (illustrated by the two faces at
the bottom), the head pose is predicted and trees of the various
conditional forests (red, yellow, green) are selected to estimate the
facial feature points.

Regression Active Shape Models [10] use boosting to pre-
dict a new location for each point, given the patch around
the current position.

Among the methods focusing on a more robust global
shape prior, Everingham et al. [11] model the face config-
uration using pictorial structures [14], a hierarchical ver-
sion of which was used in [25]. Valstar et al. [29] com-
bine SVM regression for estimating the feature points’ lo-
cation with conditional Markov random fields to keep the
estimates globally consistent. They also take advantage of
facial feature points whose position is less sensitive to fa-
cial expressions; they thus start by localizing such stable
points first and then find the additional points after a reg-
istration step. The whole process takes around 50 seconds
per image. Very recently, Amberg and Vetter [1] proposed
to run detectors over the whole image and then find the opti-
mal set of detections using Branch & Bound; however, they
only show results for high-quality images and need over one
second to process one image.

The recent work of Belhumeur et al. [3] proposed a
Bayesian model combining the outputs of the local detec-
tors with a consensus of non-parametric global models for
part locations. Their algorithm is the most accurate ap-
proach up-to-date in the literature, capable of precise lo-
calizations even in uncontrolled image conditions, like the
ones present in the Labeled Face Parts in the Wild [3]
dataset. However, the Labeled Face Parts in the Wild dataset
contains images of higher resolution and quality compared
to the LFW database [20] used for our experiments; more-



over, the reported processing time is around one second per
feature point, ruling out any real-time application.

While there exist methods for detecting facial feature
points accurately, there is a lack of reliable methods that
achieve real-time performance.

3. Facial Feature Localization using Random
Regression Forests

Random forests [4] have recently become a popular
approach in computer vision. They have been used for
a large number of classification [19, 26, 27] and regres-
sion [8, 12, 13, 15, 17] tasks. In this section, we outline the
training and testing of a random regression forest for facial
feature detection in 2D images. In Section 4, we introduce
the concept of conditional regression forests. 1

3.1. Training

Each tree T in the forest T = {Tt} is built from a dif-
ferent, randomly selected, set of training images. From
each image, we randomly extract a set of square patches
{Pi = (Ii,Di)}, where Ii represents the appearance and
Di represents the set of offsets to each facial feature point.

In our case, the patch appearance Ii is defined by mul-
tiple channels Ii = (I1

i , I
2
i , ..., I

C
i ). The first two chan-

nels contain the gray values of the raw input image and
the normalized gray values to compensate for illumination
changes. The additional channels represent a Gabor filter
bank with eight different rotations and four different phase
shifts. The set of offsets Di = (d1

i ,d
2
i ,d

3
i , . . . ,d

N
i ) con-

tains N 2D displacement vectors from the centroid of the
patch to each of the N facial feature points.

We define a simple patch comparison feature, similar
to [12, 21, 26]:

fθ(P ) =
1

|R1|
∑
q∈R1

Ia (q)− 1

|R2|
∑
q∈R2

Ia (q) , (1)

where the parameters θ = (R1, R2, a) describe two rect-
angles R1 and R2 within the patch boundaries, and the se-
lected appearance channel a ∈ {1, 2, . . . , C}.

The training follows the random forest framework pro-
posed by Breiman [4]:

1. Generate a pool of splitting candidates φ = (θ, τ).

2. Divide the set of patches P into two subsets PL and
PR for each φ.

PL (φ) = {P|fθ (P ) < τ} (2)

PR (φ) = P \ PL (φ) (3)

1Independent of this work, a similar concept has been applied in the
context of human pose estimation [28]

3. Select the splitting candidate φ which maximizes the
evaluation function Information Gain (IG):

φ∗ = arg max
φ

IG (φ) , (4)

IG (φ) = H (P)−
∑

S∈{L,R}

|PS (φ) |
|P|

H (PS (φ)) , (5)

where H (P) is the defined class uncertainty measure,
which will be described for our case in (6). Selecting a
certain split amounts to adding a binary decision node
to the tree.

4. Create leaf l when a maximum depth is reached or the
information gain IG (φ) is below a predefined thresh-
old. Otherwise continue recursively for the two subsets
PL (φ) and PR (φ) at the first step.

To build our forest for facial feature detection, we use
the Labeled Faces in the Wild [20] dataset. Each of the
13000 images is annotated with the coordinates of 10 facial
feature points shown in Fig 1. Using the bounding box re-
sulting from a face detection algorithm [30], all faces are
rescaled to a common size. To make sure that all facial
feature points are located inside the bounding box, we en-
larged the box by 30%. We then sample three quaters of the
training patches from inside the bounding box, and the re-
maining quater from the rest of the image, outside the face
bounding box.

For the problem at hand, we need trees able to cast pre-
cise votes concerning the fiducial locations. Therefore, we
evaluate the goodness of a split using (5), seeking to max-
imize the discriminative power of the tree. By maximizing
this function, the class uncertainty for a split is minimized.
The class uncertainty measurement is defined as:

H (P) = −
N∑
n=1

∑
i p (cn|Pi)
|P|

log

(∑
i p (cn|Pi)
|P|

)
, (6)

p (cn|Pi) ∝ exp

(
−|d

n
i |
λ

)
, (7)

where p (cn|Pi) indicates the probability that the patch Pi
belongs to the feature point n. The class affiliation is
based on the distance to the facial feature point. While
p (cn|Pi) = 1 for a patch Pi at the position of the n-th
facial feature, it goes to zero for patches that are far away
from the feature point. The factor λ controls the steepness
of this function. In our experiments, we use λ = 0.125.
The measure avoids a hard class assignment of the patches
that is difficult to define for facial feature points. In con-
trast to a regression objective as used in [8] and [12], it is
faster to compute and also performed slightly better in our
experiments.



When creating a leaf l, the distribution over the relative
offsets to each facial feature point is stored. While modeling
the distribution in a non-parametric manner using a Parzen
estimate over the offsets of all patches reaching the leaf at
training time as in [15] does not impose any assumption on
the type of distribution, it prevents real-time performance
for larger training sets. Therefore, we simplify the distribu-
tion over the offset by a multivariate Gaussian as in [8, 12]:

p(dn|l) = N (dn;dnl ,Σ
n
l ), (8)

where dnl and Σn
l are the mean and covariance matrix of

the offsets of the nth facial feature point.
While (8) models the probability for a patch P ending

in the leaf l of a single tree, the probability of the forest is
obtained by averaging over all trees [4]:

p(dn|P) =
1

T

∑
t

p(dn|lt(P)), (9)

where lt is the corresponding leaf for the tree Tt.
To each leaf, we also assign a confidence weight defined

by wnl = 1
trace(Σn

l ) . The probability that the leaf l is a
positive leaf for the fiducial n is defined by averaging the
class certainty of each patch that reached the leaf:

p (cn|l) =

∑
i p (cn|Pi)
|P|

. (10)

3.2. Testing

We initially run a face detection algorithm [30] to find
the position and the size of the face. After enlarging the
bounding box of the face and rescaling the face image to a
common size, we densely sample patches Pi(yi) inside the
bounding box, where yi is the pixel location of the patch
Pi.

Each patch is then fed to all the trees in the random for-
est. At each node of a tree, the patches are evaluated accord-
ing to the stored binary test and passed either to the right
or left child until a leaf node is reached. The binary tests
inside the trees are speeded up through the use of integral
images, which greatly reduce the amount of time needed to
sum the values in the subregions R1 and R2. By passing
all the sampled patches down all the trees in the forests for
facial feature detection, each patch Pi ends in a set of leafs
Li.

Given a Gaussian Kernel K and the bandwidth parame-
ter h, the density estimator for facial feature point n at pixel
location xn can be written as:

f (xn)∝
∑
i

∑
l∈Li

wnl K

xn−
(
yi+dnl

)
h

φn (l) , (11)

φn (l) =

{
1 p (cn|l) ≥ α,
0 otherwise,

(12)

where wnl is the confidence weight of the leaf l. The fac-
tor φn avoids a bias towards an average face configuration.
In order to reduce the influence of votes coming from other
parts of the face and to improve the efficiency, we consider
only leafs with a class-affiliation higher then α. Long dis-
tance votes can give a robust estimation for the overall po-
sitions of the facial parts, but the accuracy could be low.
For example, patches around the eyes provide a robust esti-
mation of the mouth area, but they carry little information
content about the exact location of the mouth corners. The
facial feature points are then obtained by performing mean-
shift for each point n.

4. Conditional Regression Forest

While a regression forest aims to model the probability
p(dn|P) (9) given an image patch P , a conditional regres-
sion forest models the conditional probability p(dn|ω,P)
and estimates (9) by

p(dn|P) =

∫
p(dn|ω,P)p(ω|P) dω, (13)

where ω is an auxiliary parameter that can be estimated
from the image. In our case, ω corresponds to the head
pose that can be estimated as described in Section 4.1.

In order to learn p(dn|ω,P), the training set is split into
subsets, where the space of the parameter ω is discretized
into disjoint sets Ωi. Hence, (13) becomes

p(dn|P) =
∑
i

(
p(dn|Ωi,P)

∫
ω∈Ωi

p(ω|P) dω

)
. (14)

The conditional probability p(dn|Ωi,P) can be learned by
training a full regression forest T (Ωi) as in Section 3 on
each of the training subsets Ωi. Similarly, the probability
p(ω|P) can be learned by a regression forest on the full
training set Ω as described in Section 4.1.

While regression forests average the probabilities over
all trees Tt (9), we select T trees from the conditional re-
gression forests T (Ωi) based on the estimated probability
p(ω|P). To this end,

p(dn|P) =
1

T

∑
i

ki∑
t=1

p(dn|lt,Ωi
(P)), (15)

where lt,Ωi is the corresponding leaf for patch P of the tree
Tt ∈ T (Ωi). The discrete values ki are computed such that∑
i ki = T and

ki ≈ T ·
∫
ω∈Ωi

p(ω|P) dω. (16)



4.1. Head Pose Estimation

To obtain the head pose, we train a regression forest sim-
ilar to [13, 19]. To this end, we quantize the training data
into 5 subsets that correspond to ‘left profile’, ‘left’, ‘front’,
‘right’, and ‘right profile’ faces since it is diffcult to obtain
continuous ground truth head pose data from 2D images. As
for the facial feature detection, we rescale the faces based on
the face detection result. Since the face bounding box is not
always perfect and sometimes contains many background
pixels, we train trees which are able to classify patches that
belong to the face and predict the head pose at the same
time. To this end, we use

Hpose (P) = −
∑
c

p (c|P) log (p (c|P)) (17)

as evaluation function (5). At each node, we randomly
choose if c corresponds to the fore- and background labels
or to the labels of the head pose class affiliation.

After replacing the head pose labels by real world angles
ω ∈ {−90,−45, 0,+45,+90} representing the yaw angle,
we store the multivariate Gaussian distribution

p(ω|l) = N (ω;ωl,Σl) (18)

in each leaf. In our case, we achieved more robust estimates
by converting the discrete labels into continuous values than
estimating the discrete head pose class labels directly.

5. Experiments
Dataset Many face databases annotated with facial fea-
tures exist. The most common ones are BioID2 (annota-
tions: FGnet project3), AR [22], and FERET [23]. All were
either acquired under controlled lighting conditions or con-
tain only frontal faces, i.e., none of the above can be con-
sidered realistic for many applications.

Exceptions exist, like the Labeled Face Parts in the Wild
(LFPW) [3] and the Labeled Faces in the Wild (LFW) [20]
databases, containing large variations in the imaging con-
ditions. While LFPW is annotated with facial point loca-
tions, only a subset of about 1500 images is made avail-
able; moreover, LFPW contains better quality images com-
pared to LFW. The LFW database contains facial images of
5749 individuals, 1680 of which have more than one im-
age in the database. The images have been collected ‘in
the wild’ and vary in pose, lighting conditions, resolution,
quality, expression, gender, race, occlusion, and make-up.
We annotated 13,233 faces taken from LFW database with
the location of 10 facial feature points shown in Fig. 3. We
used Amazon Mechanical Turk, labeling each fiducial point
at least three times and taking the mean of the annotations
as ground truth.

2www.bioid.com
3www-prima.inrialpes.fr/FGnet/html/benchmarks.

html

Evaluation As in previous work, we measure the local-
ization error as a fraction of the inter-ocular distance, a mea-
sure invariant to the actual size of the images. We declare a
point correctly detected if the pixel error is below 0.1 inter-
ocular distance, a very stringent measure, as exemplified by
Fig. 3. We also compare to the performance of human anno-
tators, measured as in [3] by calculating the average error of
a MTurk user in comparison to the mean of the other users.

Figure 3. Two images of the LFW dataset annotated with 10 facial
feature points. The white circles show the error tolerance (10% of
the inter-ocular distance).

Training For training the regression trees, we fixed some
parameters on the basis of empirical observations, e.g., the
trees have a maximum depth of 20 and at each node we ran-
domly generate 2500 splitting candidates and 25 thresholds.
Each tree is grown based on a randomly selected subset of
1500 images. After running the face detection algorithm
on each image, we rescale the face bounding box to 100 ×
100 pixels and enlarge it by 30% to make sure that all facial
features are enclosed. We then extract fixed size (20 × 20
pixels) patches from each training image, 150 from within
the face and 50 from outside.

Testing Test-time parameters include the number of
mean-shift iterations, the bandwidth of the mean-shift ker-
nel h (11), and the α (12) which limits the impact of distant
votes. Such parameters are automatically estimated during
training from a validation set generated from the training
data by randomly extracting 100 patches from every train-
ing image. This means that it is possible but improbable
that the evaluation set contains patches which are also part
of the training set. On these out of bag data, we then per-
form a grid search to determine the best parameters.

The most important parameter turns out to be α (12).
When equal to zero, all patches contribute to the mean shift,
while only patches in a small neighborhood are taken into
account when α is close to one. Fig. 4 shows the impact of
α on the detection accuracy: Without the thresholding, the
detector tends towards the mean face and the accuracy is
below 70%; by removing distant votes, the detection relies
more on local patches and the performance increases signif-
icantly over 80% for α around 0.3. When the neighborhood
becomes very small (α > 0.75), the approach fails due to

www.bioid.com
www-prima.inrialpes.fr/FGnet/html/benchmarks.html
www-prima.inrialpes.fr/FGnet/html/benchmarks.html
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Figure 5. Performance of conditional regression forests compared to human performance and to a standard regression forest (without
clustering) using 3 clusters (a) and 5 clusters (b). Combining all trained conditional regression trees does not outperform the regression
forest. Selecting the trees based on (16) improves the accuracy (soft/hard assignment) in particular for 5 clusters where the performance
is close to human performance. (c) At a 0.1 inter-ocular distance threshold, the accuracy increases from 81.57% to 86.10% (5 clusters)
where humans achieve 87.5%.
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Figure 4. Average accuracy of the fiducial localization. Different
values for the parameter α are evaluated.

the small number of votes.

Head Pose For the head pose estimation, we use the same
settings as for the facial feature localization. Each image in
the dataset is manually annotated with one out of the five
head pose labels (profile left, left, front, right, profile right).
We train a forest of 10 trees with a maximal depth of 10.
For estimating the head pose, we process only 1 out of 25
image patches. Our final head pose estimator reaches an
accuracy of 72.15%, computed over a ten-fold cross vali-
dation. Examples of the estimated head pose are shown in
Fig. 1.

Conditional Regression Forests For evaluating the con-
tribution of the conditional regression forests, we grouped
the training data depending on the head pose into 5 (profile
left, left, front, right, profile right) and 3 (left, front, right)
clusters. We then trained a complete forest for each subset.

We compared three ways of selecting T trees for the
conditional regression forest. While (16) selects the trees
conditional to the estimated head pose probability (soft as-
signment), one can also select only trees for the head pose
with the highest probability (hard assignment). An addi-
tional naı̈ve approach (combination) randomly selects the

trees without taking the estimated pose into account. Fig. 5
shows the results: While soft and hard assignment perform
similar and both outperform the standard regression forest,
the naı̈ve approach does not improve the regression forest.
Using 5 instead of 3 clusters improves the performance of
the conditional regression forest by an additional 2%.

Regression forests provide two convenient parameters
for finding the right trade-off between runtime and accu-
racy, namely the number of trees to be loaded and the sam-
pling stride, i.e., the distance between patches sampled at
test time. As shown in Fig. 6, a higher number of trees and
a lower stride improve the accuracy at the cost of a higher
average computation time4. The stride parameter is crucial
when real-time performance is needed: a stride greater or
equal to 3 already allows for over 10 fps (i.e., below 100ms
for one frame) at a marginal loss in accuracy. Notice that
the rescaling and normalizing of the input image and fea-
ture extraction already takes about 19 ms and that the head
pose estimation needs another 14 ms. A video demonstrat-
ing the real-time performance is part of the supplementary
material.

In order to accurately measure the performance of our
system, we performed a ten-fold cross validation experi-
ment. We compare our results to two state-of-the-art meth-
ods in Fig. 7. We used the publicly available facial features
detectors of Valstar et al. [29] and Everingham et al. [11]
on our dataset. Our method clearly outperforms both com-
petitors with respect to accuracy and runtime, but we have
to point out that the other methods were not trained on
the same dataset. For further comparisons, we have made
the source code of our approach and the annotations of the
dataset publicly available5.

The error for each facial feature point is given in Fig. 7

4Measured on 1000 randomly selected images using Intel Core i7
3.06GHz with 4 cores (multi-threaded).

5http://www.vision.ee.ethz.ch/˜mdantone

http://www.vision.ee.ethz.ch/~mdantone


(a) (b)
Figure 6. Trade-off between runtime and accuracy. (a) Number of trees. (b) Stride. A stride greater than 3 allows 10 fps.
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Figure 7. Comparison to other methods. (a) Mean error. (b) Accuracy. (c) Accuracy plotted against the success thresholds.

Cond. RF Everingham
facial feature accuracy[%] mean error mean error

left eye left 87.7 0.0682 0.1621
left eye right 93.5 0.0565 0.1070
right eye left 92.9 0.0567 0.0937
right eye left 86.2 0.0736 0.1116
mouth left 81.9 0.0738 0.1076
mouth right 80.8 0.0780 0.1514
nose strip left 90.4 0.0592 0.1085
nose strip right 88.2 0.0705 0.1208
upper outer lib 86.7 0.0640 -
lower outer lib 71.5 0.0953 -

Table 1. Detection accuracy for all facial feature points.

and Table 1. For the inner corners of the eyes and for the
two nose strips, we achieve an accuracy that is comparable
to human performance. The most difficult point to detect
is the lower lip. Fig. 8 shows some qualitative results. In
particular, the last row shows some failure cases due to oc-
clusions or a head pose that is not well represented in the
training data.

6. Conclusions
We have presented a real-time algorithm for facial fea-

ture detection based on the novel concept of conditional
regression forests. Such ensembles of regression trees es-

timate the position of several facial landmarks conditional
to the probability of some global face properties. In this
work, we have demonstrated the benefits of conditional re-
gression forests by modeling the appearance and location
of facial feature points conditional to the head pose. The
proposed method achieves an accuracy comparable to the
performance of human annotators on a large, challenging
database of faces captured “in the wild”. In our future work,
we intend to model other properties like sunglasses or facial
hair that still cause some problems as well. We also believe
that the concept of conditional regression forests might be
relevant for other computer vision applications.
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