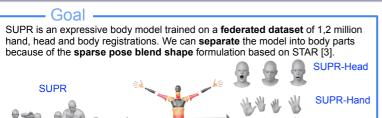
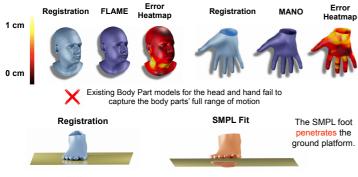


SUPR: A Sparse Unified Part-Based Human Representation

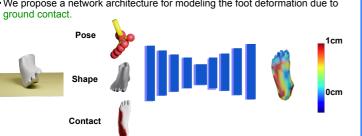

Ahmed A. A. Osman¹, Timo Bolkart¹, Dimitrios Tzionas^{1,2}, Michael J. Black¹

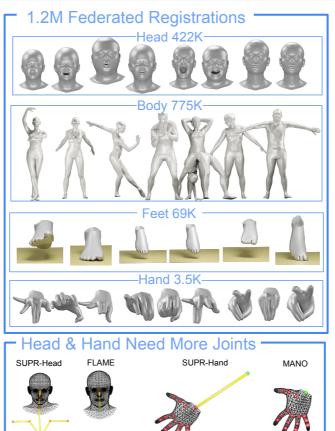
¹Max Planck Institute for Intelligent Systems, Tübingen ²University of Amsterdam

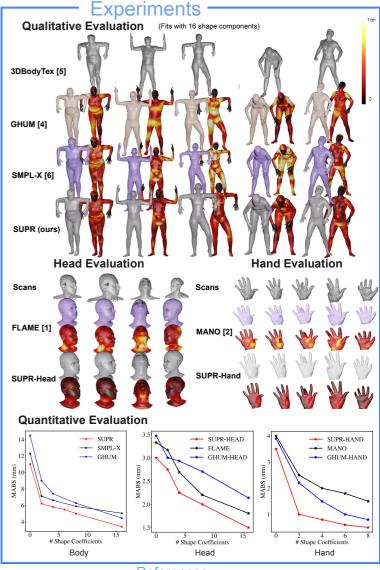

supr.is.tue.mpg.de

Code, Models and Data

SUPR-Foot


Problems Body parts that are trained on separated scans do not capture deformations for the full range of head and hand motion.




- Existing models only relate the body deformations to the body pose.
- · We propose a network architecture for modeling the foot deformation due to ground contact.

No foot model exists that can capture foot deformation due to ground contact

Foot Deformation (a) Raw Scanner Images (b) SUPR-Foot predicted deformation

References

- 1. Li, Tianye, et al. "Learning a model of facial shape and expression from 4D scans."
- 2. Romero et al. "Embodied hands: Modeling and capturing hands and bodies together."
- 3. Osman et al. "STAR: Sparse trained articulated human body regressor."
- 4. Xu et al. "Generative 3D human shape and articulated pose models."
- 5. Saint et al. "3DBodyTex: Textured 3D body dataset."
- 6. Pavlakos et al. "Expressive body capture: 3D hands, face, and body from a single image."