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Multi-view setup: TEMPEH infers 3D head meshes in cor-
respondence from calibrated multi-view images. Specifi-
cally, we use the eight pairs of gray-scale stereo images of
an active stereo camera system as input (see Sec. 4 of the
paper for details). Figure 1 shows the 16 images for the first

Figure 1. Multi-view setup. The 16 gray-scale stereo images
(contrast enhanced for visualization) used as input to TEMPEH.

sample of the paper’s teaser figure.
Head localization: The coarse head prediction stage local-
izes the head in the feature volume with a learnable spatial
transformer. Figure 2 visualizes the spatial dimensions of
the localized volume for different predicted heads of the

coarse stage. This shows that the spatial transformer suc-
cessfully localizes the head for different subjects in varying
head poses.

Figure 2. Head localization. Spatial dimensions of the localized
feature volumes (blue box) for different predicted heads, visual-
ized in the same global coordinate system.

Error masks: To analyze the accuracy in different head
regions, reconstruction errors are reported individually for
the face, scalp, and neck regions. For this, different regions
are defined on a FLAME template mesh (see Figure 3), and
each scan is then segmented based on the distance to the
closest points in the surface of the reference registrations.
Test evaluation: Figure 4 provide the cumulative recon-
struction errors for the FaMoS test data. TEMPEH predicts
heads for the test images (subjects disjoint from the training
subjects) with a lower error than previous state-of-the art,
ToFu [4], and its variant without mesh hierarchy, ToFu+.
3DMM regressor comparisons: For the multi-view
3DMM regressor, each image is processed by a shared
ResNet152 [2] to infer a 2048-dimensional feature vector
for each view. The feature vectors are then fused across all
16 views by concatenating them in a fixed order. We ex-
perimented with other feature fusion variants such as using
the mean across views, or the concatenated mean and vari-
ance, but these variants produced inferior results. Following
DECA [1], a fully-connected layer with ReLU activations
outputs a 1024-dimensional feature vector, followed by fi-
nal linear layer to output FLAME parameters. We train the
3DMM regressor for 1 Million iterations with a vertex-to-
vertex to the reference registrations, with a learning rate of
1e-3. We found that the 3DMM regressor is unable to reli-
ably reconstruct 3D heads in our setting (see Fig. 5).
Registration quality: The training of TEMPEH minimizes



Complete head Face Scalp Neck
Method Median ↓ Mean ↓ Std ↓ Median ↓ Mean ↓ Std ↓ Median ↓ Mean ↓ Std ↓ Median ↓ Mean ↓ Std ↓
Ours (coarse) 0.80 1.61 3.86 0.67 0.85 1.31 0.84 2.31 5.59 1.11 1.68 2.34
Ours 0.17 0.30 0.97 0.14 0.23 1.10 0.16 0.24 0.39 0.24 0.53 1.46

Table 1. Registration quality. Reconstruction errors on the FaMoS training data. All errors are in millimeter.

Figure 3. Error masks. Head regions (red) for quantitative evalu-
ations. From left to right: complete head, face, scalp, and neck.
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Figure 4. Quantitative evaluation. Cumulative plots of the re-
construction errors on the FaMoS test data.

the distance to multi-view stereo (MVS) scans, hence it ef-
fectively registers the scans. For completeness, we also re-
port the registration errors in Table 1. For this, we predict
all heads from the training images, and compute the point-
to-surface distance for all MVS scan points.
Ablation experiments: Figure 6 shows additional ablation
results. While the model variants without head localization
(Ours w/o head localization) or with a hierarchical architec-
ture (Ours hierarchical) produce reconstructions with low
distance to the reference scans, they reconstruct the lip re-
gion with lower fidelity than the final model.
Failures: TEMPEH’s coarse stage reconstruction can fail

Input Regressor Ours Scan

Figure 5. 3DMM regressor comparison. For multi-view input
(left: 4 of 16 views), the 3DMM regressor regressor (second col-
umn) is unable to faithfully reconstruct the identity face shape,
while TEMPEH (third column) closely resembles the reference
scan (right).

under large occlusions due to extreme head poses (see Fig-
ure 7). We found empirically that training the coarse stage
for 250K more iterations improves the quality of the recon-
structed head meshes for such extreme head poses.
Computational requirements: TEMPEH and the baseline
models are trained/evaluated on a computing unit with a sin-
gle NVIDIA A100-SXM 80 GB GPU and 16 CPU cores.
Training TEMPEH/ToFu/ToFu+ allocates 26/4/14 GB GPU
memory for the coarse stage, 37/34/37 GB for refinement,
and up to 21 GB RAM. GPU memory is mainly allocated in
the volumetric feature sampling and the probability volume
prediction for the 2 (batch) ×5023 local grids of size 83.
Training TEMPEH takes 6 days (3.5/2.5 days for coarse /
refinement). Inference for TEMPEH/ToFu/ToFu+ allocates
6/4/6 GB GPU memory for the coarse stage and 10/6/8 GB
for refinement.
Running time evaluation: TEMPEH targets the typical
two-step process of reconstructing 3D meshes in corre-
spondence, MVS, followed by non-rigid registration. This
pipeline takes ≥ 10 minutes per mesh (Tab. 1 [4]), while
TEMPEH takes 0.27s. While ToFu/ToFu+ is even faster
with 0.16/0.18s, TEMPEH reconstructs 3D heads with a
64% lower error. The time difference between ToFu/ToFu+
and TEMPEH is mainly due to the visibility computation
in the surface-aware feature fusion. TEMPEH w/ naı̈ve
feature fusion requires 0.17s, comparable to ToFu/ToFu+.
The coarse model inference accounts for about 0.03s for all
models. The fast inference speed is due to downsampling
of the input images, and due to parallelization. Specifically,
the feature extraction is parallelized across images (stacked
across the batch dimension), while feature sampling & ag-
gregation, head inference, and mesh refinement are paral-
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Figure 6. Additional ablation experiments. For each model variant, we show the reconstructed mesh (left) and the color coded point-to-
surface distance (right) between reference scan and reconstructed mesh as heatmap on the scan’s surface (red means ≥ 3 millimeter).

Figure 7. Failures. For input images (left: 10 of 16 views) where
the face is occluded in most views, the coarse stage reconstruc-
tion can fail (middle), resulting in poorly estimated head meshes.
Longer training of the coarse stage can improve the reconstruction
performance for such extreme cases (right).

lelized across all points.
Data diversity: FaMoS data are female/male: 52/41; age
18-34: 65, 35-50: 14, 51-69: 13, 70+: 1; Middle-Eastern: 6,
South American: 10, Asian: 24, Pacific Ocean: 1, African:
3, European: 49. We provide self-identified ethnicity labels
as provided by each participant with the dataset.
Model architecture: TEMPEH uses volumetric features to
localize, infer and then refine the output mesh. These fea-
tures are extracted from the input images with two separate
2D feature extraction networks Fimg, one for coarse head
prediction (Section 3.1) and one for head refinement (Sec-
tion 3.2). Both networks use a fully-convolutional U-Net
[5] architecture with a ResNet34 [2] backbone. Both feature
networks take downsampled images as input (i.e., images of
size w = 200, h = 150 for the coarse stage, and w = 400, h
= 300 for the refinement stage), and output a feature map F

with the same spatial resolution as the image, with a feature
dimension of 8. We empirically found that adding two addi-
tional skip connections for the feature networks compared
to ToFu’s implementation improved the reconstruction per-
formance of the refinement network. For a fair comparison
to ToFu and ToFu+, we use the same feature extractor net-
works with added skip connections for all models.

The reconstruction networks in coarse and refinement
stages, Frec and Fref, respectively, are both 3D U-Nets [3].
Similar to ToFu, the coarse stage reconstruction network
Frec has five down- and upsampling blocks, with a slight
modification of the third last and second last convolution
blocks, which output 64 and 128 channels (instead of 32 for
ToFu). The refinement stage reconstruction network Fref
follows a similar structure, but with three down- and up-
sampling layers, same as ToFu.
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