Header logo is ps

ps Thumb sm thumb javier winter 2
Javier Romero (Project leader)
ps Thumb sm thumb silvia
Silvia Zuffi
Guest Scientist
ps Thumb sm thumb img 1090
Matthew Loper
Alumni
ps Thumb sm me pic large
Naureen Mahmood
Research Engineer
ps Thumb sm img 20170501 231243
Gerard Pons-Moll
Research Scientist
ps Thumb sm ports 160922 1261headcrop2
Michael Black
Director
ps Thumb sm thumb fbogo resized
Federica Bogo
Alumni
3 results

2015


Thumb xl splitbodieswebteaser2
SMPL: A Skinned Multi-Person Linear Model

Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M. J.

ACM Trans. Graphics (Proc. SIGGRAPH Asia), 34(6):248:1-248:16, ACM, New York, NY, October 2015 (article)

Abstract
We present a learned model of human body shape and pose-dependent shape variation that is more accurate than previous models and is compatible with existing graphics pipelines. Our Skinned Multi-Person Linear model (SMPL) is a skinned vertex-based model that accurately represents a wide variety of body shapes in natural human poses. The parameters of the model are learned from data including the rest pose template, blend weights, pose-dependent blend shapes, identity-dependent blend shapes, and a regressor from vertices to joint locations. Unlike previous models, the pose-dependent blend shapes are a linear function of the elements of the pose rotation matrices. This simple formulation enables training the entire model from a relatively large number of aligned 3D meshes of different people in different poses. We quantitatively evaluate variants of SMPL using linear or dual-quaternion blend skinning and show that both are more accurate than a Blend-SCAPE model trained on the same data. We also extend SMPL to realistically model dynamic soft-tissue deformations. Because it is based on blend skinning, SMPL is compatible with existing rendering engines and we make it available for research purposes.

pdf video code/model errata DOI Project Page [BibTex]

2015

pdf video code/model errata DOI Project Page [BibTex]


Thumb xl silviateaser
The Stitched Puppet: A Graphical Model of 3D Human Shape and Pose

Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition (CVPR 2015), pages: 3537-3546, June 2015 (inproceedings)

Abstract
We propose a new 3D model of the human body that is both realistic and part-based. The body is represented by a graphical model in which nodes of the graph correspond to body parts that can independently translate and rotate in 3D as well as deform to capture pose-dependent shape variations. Pairwise potentials define a “stitching cost” for pulling the limbs apart, giving rise to the stitched puppet model (SPM). Unlike existing realistic 3D body models, the distributed representation facilitates inference by allowing the model to more effectively explore the space of poses, much like existing 2D pictorial structures models. We infer pose and body shape using a form of particle-based max-product belief propagation. This gives the SPM the realism of recent 3D body models with the computational advantages of part-based models. We apply the SPM to two challenging problems involving estimating human shape and pose from 3D data. The first is the FAUST mesh alignment challenge (http://faust.is.tue.mpg.de/), where ours is the first method to successfully align all 3D meshes. The second involves estimating pose and shape from crude visual hull representations of complex body movements.

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

pdf Extended Abstract poster code/project video DOI Project Page [BibTex]

2010


Thumb xl contourpersonimagesmall
Contour people: A parameterized model of 2D articulated human shape

Freifeld, O., Weiss, A., Zuffi, S., Black, M. J.

In IEEE Conf. on Computer Vision and Pattern Recognition, (CVPR), pages: 639-646, IEEE, June 2010 (inproceedings)

pdf slides video of CVPR talk Project Page Project Page [BibTex]

2010

pdf slides video of CVPR talk Project Page Project Page [BibTex]