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Fig. 1: FlowCap overview. a. Example frame from a video sequence shot with
a phone camera. b. Optical flow computed with GPU flow [1]. c. Per-pixel part
assignments based on flow with overlaid uncertainty ellipses (red). d. Predicted
2D part centroids connected in a tree.

Abstract. We estimate 2D human pose from video using only optical
flow. The key insight is that dense optical flow can provide information
about 2D body pose. Like range data, flow is largely invariant to ap-
pearance but unlike depth it can be directly computed from monocular
video. We demonstrate that body parts can be detected from dense flow
using the same random forest approach used by the Microsoft Kinect.
Unlike range data, however, when people stop moving, there is no op-
tical flow and they effectively disappear. To address this, our FlowCap
method uses a Kalman filter to propagate body part positions and ve-
locities over time and a regression method to predict 2D body pose from
part centers. No range sensor is required and FlowCap estimates 2D
human pose from monocular video sources containing human motion.
Such sources include hand-held phone cameras and archival television
video. We demonstrate 2D body pose estimation in a range of scenarios
and show that the method works with real-time optical flow. The results
suggest that optical flow shares invariances with range data that, when
complemented with tracking, make it valuable for pose estimation.

1 Introduction

Human pose estimation from monocular video has been extensively studied but
currently there are no widely available, general, efficient, and reliable solutions.
The problem is challenging due to the dimensionality of articulated human pose,
the complexity of human motion, and the variability of human appearance in
images due to clothing, lighting, camera view, and self occlusion. There has been
extensive work on 2D human pose estimation using part-based models [8, 11,
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12, 19, 27, 29], but existing solutions are still brittle. Systems like the Microsoft
Kinect [21] address the above issues by using a specialized depth sensor that
simplifies the problem by exploiting additional information. Depth data enables
direct estimation of 3D pose while providing invariance to appearance.

What is missing is a robust solution like Kinect for the general 2D human
pose estimation problem from video; that is, one that applies to archival video
sources and can be used with devices such as cell phones and laptops that are
currently equipped only with a monocular video camera. We propose optical
flow as a key ingredient for such a solution, and demonstrate its potential with
a system called FlowCap that estimates 2D pose using only optical flow.

Our method is made possible by the following observation: Optical flow con-
tains much of the same information as range data. An optical flow field is much
like a depth map in that the effects of appearance are essentially removed (see
Supp. Mat.). Flow captures information about the overall shape and pose of
the body and the boundary between the body and the background (Fig. 1b).
Moreover, flow has an advantage beyond range data: 2D flow also captures the
motion of body parts and we use this to good effect.

The first component of our approach follows that of Shotton et al. [21] except
we replace range data with optical flow. We train a regression forest using flow
and body part segmentations of realistic synthetic bodies in motion. As in [21] we
predict per-pixel body part assignments and identify the part centroids (Fig. 1c).

Optical flow has one key disadvantage relative to range data: When a person
is stationary, flow does not tell us where they are. It does however tell us some-
thing important – that the person is not moving. To take advantage of this, the
second component of our method adds a temporal prediction process on top of
the body part detections. We use a Kalman filter to estimate the locations and
velocities of all body parts in 2D. By estimating velocities, we are able to in-
corporate information from the optical flow into the Kalman observation model.
This improves part estimation when the person is moving as well as when they
are still. When a person stops moving, the flow is near zero and the Kalman
filter predicts the body is not moving, resulting in a stable pose estimate.

Using the HumanEva benchmark [23] we compare FlowCap with a state-of
the-art single-frame method [27] and find that, when people are moving, Flow-
Cap is more stable. We demonstrate that the accuracy of real time optical flow
estimation (GPU4Vision [26]) is sufficient for our task. We also test FlowCap on
video sequences captured outdoors, with a moving hand-held cell-phone camera,
and with archival video from television.

We do not propose FlowCap as a complete, stand-alone, system. Our ap-
proach, using only flow, cannot compete with Kinect’s use of range data for
accuracy or for 3D estimation. Rather our goal is to show that optical flow has
a role in human pose estimation and that it shares properties with depth data.
Clearly a full solution will include color data but here we demonstrate how far
one can get with flow alone. To facilitate further work, we will make our training
set of flow data available for research purposes1.

1 http://ps.is.tuebingen.mpg.de/project/FlowCap
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2 Prior Work

There is a huge literature on pose estimation in static images, video sequences,
and using depth information from many sources. We focus on 2D human pose,
which is widely studied and useful for applications such as person detection,
human tracking, activity analysis, video indexing, and gesture recognition. Here
we focus on the two areas most closely related to our method: Microsoft’s Kinect
and articulated pose estimation from optical flow.

Kinect: Kinect performs human motion capture from an inexpensive device
in a person’s home with sufficient accuracy for entertainment purposes. While
popular, range sensing devices like Kinect are still not widely deployed when
compared with traditional video cameras. Since the Kinect works only on range
data it cannot be used for human pose estimation with archival data from tele-
vision and films. Additionally, the Kinect’s IR illumination can be swamped by
natural light, rendering it useless outside.

One key to the success of Kinect is the use of regression forests [21]. Unfor-
tunately, it is not feasible to apply this method directly to regular video images
due to the huge variability in human appearance. Range data is important for
the success of Kinect for two reasons. First it provides direct observations of
scene depth, removing the ambiguities inherent in the 2D projection of people
onto the image plane of a monocular camera. Second, and just as important,
is that the range data simplifies the signal processing problem by removing the
irrelevant effects of appearance and lighting while maintaining the important
information about body structure. Our observation is that optical flow provides
similar benefits, in particular with respect to this second point.

The first step of our method uses the regression forest of [21] but replaces
depth training data with optical flow. After this we deviate from [21] because,
unlike range, when the person stops moving the flow is zero. Consequently to
know where the person is, our method requires a temporal model to integrate
information; [21] does not use a temporal model but rather, finds the person
again in every frame.

Pose from flow: There are many 2D and 3D model-based methods for
estimating human pose from video that exploit optical flow (e.g. [6, 17, 22, 24]).
These methods relate the 2D image motion to the parameters of an articulated
figure. Motion History Images [5] have also been used for pose classification.

Fablet and Black [10] use a synthetic character and motion capture data to
generate training flow fields from different views. They use PCA to construct
a low-dimensional representation of the flow and represent simple activities as
trajectories in that low-dimensional space. They use a multi-view representation
to cope with changing 3D viewpoint but do not estimate articulated pose.

Efros et al. [7] use optical flow patterns to estimate pose. They focus on
low resolution people in video, which makes the flow information limited and
noisy. Consequently they treat it as a spatio-temporal pattern, which becomes
a motion descriptor, used to query a database for the nearest neighbor with a
similar pattern and known 2D and 3D pose. They require similar sequences of
full body poses in the database.
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Bissacco et al. [3] train a boosted regression method to recognize pose from
image and motion features. They do not use optical flow directly, but rather
work on image differences. Schwarz et al. [20] use flow between time of flight
range images to help differentiate body parts that occlude each other but do not
estimate body pose from flow.

Recently, several methods augment traditional 2D pose estimation with op-
tical flow information. In [13] they use flow to help segment body parts while
jointly reasoning about pose, segmentation, and motion. In [29] they use flow
to propagate putative 2D body models to neighboring frames. This enables an
image likelihood function that incorporates information from multiple frames.
In [16] the authors train a deep convolutional neural network (CNN) to use im-
ages and flow to estimate upper body pose. These approaches rely primarily on
non-flow image cues, with flow as an extra cue. Here we explore the question of
how far we can go with flow alone.

3 Data

Like [21] we generate training data using a realistic 3D human body model.
However, generating a good flow training set, differs from their approach. First,
the same body pose at time t can move to many different poses at t+1 resulting
in different flow fields. Consequently, the training data must cover a range of both
poses and changes in pose. Second, camera motions change the observed flow.
While we robustly estimate and remove camera motion we assume there will be
some residual camera motion and consequently build this into our training set to
improve robustness. Third, optical flow computed on real images is not perfect
and can be affected by lighting, shadows, and image texture (or lack thereof);
we need to realistically model this noise. To do so, we synthesize pairs of frames
with varied foreground and background texture, and various types of noise, and
then run a flow algorithm to compute the training flow. The training dataset
contains realistic human bodies in varying home environments performing a
variety of movements. Example training data is shown in Fig. 2a.

Body shape variation. We use a 3D body model [15] that allows us to gen-
erate 3D human bodies with realistic shapes in arbitrary poses. We use separate
body shape models for men and women and generate a wide variety of body
shapes. The model represents people in tight clothing, but future work could
add synthetic clothing and hair.

As in [21], the body model is segmented into parts, which are color coded
for visualization (Fig. 2a bottom). The training data includes the 2D projection
of these part segments and the 2D centroids of each part. Note that we use 19
parts, fewer and larger than in [21]; these provide more reliable part detection.

Body pose variation. To capture a wide range of human poses and motions
we generate training pairs of poses representing plausible human movements be-
tween two frames. We do this in two ways. For experiments with the HumanEva
dataset, we take the motion capture data from the training set and animate bod-
ies using these motions. While appropriate for the HumanEva evaluation, the
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set of motions is somewhat limited. Consequently for our other experiments, we
create a generic motion dataset. We create a distribution of natural poses from
a dataset of 3D registrations like [4]. Then we sample pairs of poses and generate
paths between them in pose space. Finally, we sample points along these paths,
biased towards one of the originals, to define the pose change between frames.

Appearance variation. The performance of optical flow methods is af-
fected by image texture and contrast. For example, when the background is
homogeneous the estimated optical flow field may be overly smooth, blurring
the foreground motion with the background motion; this can be clearly seen in
Fig. 2a. We posit that these effects should be present in our dataset to be able
to successfully estimate human pose from real flow.

We created high resolution texture maps from 3D scans of over 30 subjects.
For each body shape, we randomly select a texture map and render the body
in a basic 3D environment with a wall, floor, some simple objects, and some
independently moving objects to simulate clutter and background motion. While
not photo-realistic, the scenes have relatively realistic lighting, blur, and noise.

Flow computation. Flow algorithms make different trade-offs between ac-
curacy and speed. To evaluate whether the real-time estimation of 2D body
pose is feasible, we compare two methods using [1]: one non-real-time (3 second-
s/frame) and the other real-time but noisier. For the former we use the Huber-L1
method from [26]. For the latter we use FAST HL1 in [1].

Scale variation. As is common in the 2D human pose literature, we train
two separate models at different scales (Fig. 2a left and right). The appropriate
model is manually picked depending on the test sequence. The first captures
upper body movement common in archival video like TV sitcoms. The second
captures the full body and is aimed at game applications like in [21]. Within
each category we generate training samples with a range of scales to provide
some scale invariance. This scale invariance is demonstrated in our experiments
with HumanEva, in which the size of the person varies substantially.

Training data summary. The HumanEva training set is composed of ap-
proximate 7, 000 training examples of the full body. We generate two generic
datasets: The upper body dataset is composed of approximately 7, 000 training
examples, while the full body dataset has approximately 14, 000.

4 Method

The goal is to sequentially estimate the 2D pose of a human body from a series
of images. As in [21], we consider two subproblems: A classification problem of
assigning a body part identifier to each pixel, and a regression problem of infer-
ring the position of the body joints. We add an additional tracking component
that is essential when using flow.

Problem definition: Our input consists of a sequence of k + 1 images,
Yi, of dimensions m × n. For each image Yi, we estimate the optical flow field,
Vi, between Yi and Yi+1 as described in Sec. 3. To reduce the effect of camera
motion we also robustly estimate a dominant global homography for the image
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Fig. 2: a) Training data. Top row: example synthetic frames from pairs of
training frames. Middle: Estimated optical flow for each frame. Bottom: Ground
truth body part segmentations. b) Visual summary of the method. Left
to right: image capture with Kinect RGB camera, optical flow (color coded as
in [2]), per pixel part labels, part centers with uncertainty (red circles) and
motion vectors (10x actual magnitude), estimated kinematic structure of the
part centers, predicted Kinect kinematic structure using linear regression.

pair using RANSAC. Let the flow field at every pixel, given by the homography,
be Hi. Then we define the residual flow field to be V̂i = Vi −Hi.

For every residual flow field, V̂i, our goal is to estimate the 2D locations of
j joints, Xi, of size j × 2; like [21], we use body part assignments to p parts
as an intermediary between observables and joint locations. This is achieved in
three steps. First, we estimate per-pixel body part assignments with a matrix,
Pi, of size m × n × (p + 1); labels correspond to either one of p body parts
or the background. A label matrix, Li, of size m × n is simply computed as
Li(x) = arg maxl Pi(x, l), where x = (x, y) is an image pixel location. Second,
we compute a matrix, Mi, of size p× 2 containing the 2D centroids of the body
parts in the image. Finally, the matrix, Xi, of 2D joint locations is predicted
from Mi using linear regression.

Flow difference features: Following [21], each pixel is described by a t di-
mensional feature vector Fi(x). Here we take Fi(x) to include the flow magnitude
‖V̂i(x)‖ at the pixel and a set of t−1 flow differences, ‖V̂i(x)− V̂i(x+δx, y+δy)‖,
computed with random surrounding pixels. The maximum displacements, δx, δy
are set to 160 pixels for the full body training set and 400 pixels for the upper
body set. A full body typically occupies around 100 × 300 pixels. Inspired by
[21], we chose t = 200 and draw the samples δx, δy from a Gaussian distribution.

Body part classification: FlowCap classifies each feature vector, Fi(x),
at each pixel into one of p + 1 classes representing the p body parts and the
background. Randomized decision forests (implementation from [18]) are used
to classify flow difference features. For each training image, we randomly sample
2000 pixel locations uniformly per part and use the associated feature vectors
to train the classifier. Six trees are trained with maximum depth so that leaves
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contain a minimum of four samples. Given a flow field as input, the output of
the decision forest is a matrix Pi from which we compute the label matrix Li.

In the absence of motion, the classification, Li, is ambiguous (row 2 in
Fig. 2b). A static pixel surrounded by static pixels is classified as background.
However, the lack of motion is a strong, complementary, feature that we can ex-
ploit in a tracking scheme. In this way, optical flow is used in two ways: first, as a
static, appearance-invariant, feature for per-frame pose estimation, and second,
as an observation of the pixel velocities for effective part tracking.

Part centroid tracking: The per-pixel part classifications are now used to
track the part positions. For simplicity, we track a single hypothesis M̂i(l) of
the centroid of each part l. Considering multiple modes is promising and left
for future work. While the most straightforward estimation of the 2D centroids
would be a weighted average according to probabilities Pi, we seek a more robust
estimation based on the following approximation of the mode

M̂i(l) =
∑
x

Pi(x, l)
αx/

∑
x

Pi(x, l)
α (1)

where α = 6 in our experiments. Alternatively, this could be done by retraining
the regression tree leaves to infer pixel offsets to the joint centroids, M̂i−x [21].

The modes can be very inaccurate in the absence of movement. To address
this we perform temporal tracking of the centroids (independently per part)
using a linear Kalman filter [25]. The state of the filter contains the estimation of
the position and velocity of each part centroid, Mi(l),M

′
i(l). The measurements

are the centroid estimates, M̂i(l), and the velocities, M̂ ′i(l), which we compute
from the optical flow in a region around the current estimate. Since we are
directly observing estimations of our state, the observation model is the identity.
The states are initialized with their corresponding measurement M0(l) = M̂0(l),

M ′0(l) = M̂ ′0(l). The state-transition model assumes constant velocity:

Mi(l) = Mi−1(l) +M ′i−1(l) (2)

M ′i(l) = M ′i−1(l). (3)

The definition of the process and measurement noise is not so straight-forward.
All noise models are considered uncorrelated. We empirically set the transition
noise standard deviations to values between 2 and 20 pixels depending on the
body part. The velocity component of the measurement noise, related to the
flow accuracy, is empirically set to standard deviations of 5 pixels. The position
component of the measurement noiseQMi depends on the accuracy of the decision
forest estimation, through its estimations of the per-part probability matrices Pi

QMi (l) = k2i /
(∑

x

Pi(x, l)
)2

(4)

where ki is a part-dependent constant, with empirical values between 40 and
100 pixels, reflecting the accuracy differences of the random forest across body
parts.
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Predicting joints: Tracking results in estimations of the body part cen-
troids, Mi; Fig. 2b, fifth column, shows estimated part centers connected by
purple lines. For many applications, however, we want the locations of the joints
in an articulated model. One could directly learn these using the regression forest
but it is more straightforward to estimate part centers and then estimate joint
locations from these.

The relation between part centroids and joint locations is learned from the
training dataset described in Sec. 3. Joint positions are predicted linearly from
centroids, both represented in 2D. On HumanEva training data, we regress from
detected part centroids to the ground truth 2D marker locations with an L1
loss. For the other experiments we use the generic training data and train the
regression function from the ground truth part centroids to the ground truth
model joints using elastic net [28]. Figure 2b, sixth column, shows the kinematic
tree corresponding to predicted joints in turquoise.

5 Experiments

We summarize the experiments here; see supplemental video for more.
1. HumanEva. We compare FlowCap’s performance on monocular 2D hu-

man pose estimation with [27]. This single-frame method estimates human pose
based on the image gradients. In contrast, FlowCap completely disregards the vi-
sual appearance of a single frame, exploiting solely optical flow. The comparison
is performed on the validation set of HumanEva I [23], which contains sequences
of multiple subjects performing a variety of actions. We evaluate the methods on
video from the single color camera, C1, for sequences containing movement for
every body part, namely “Walking” and “Jog”. The motions involve significant
changes in scale and a full 360 degree change in orientation of the body.

Figure 3a shows 2D marker error, and confirms that FlowCap outperforms
[27] on this subset of HumanEva I. The method of [27] has large errors in some
frames due to misdetections on the background or large errors of the arm joints.
This is reflected in larger standard deviations. While not a comprehensive com-
parison, this suggests flow can be a useful cue for 2D human pose.

2. Outdoors. While Kinect works well indoors, we captured a game-like
sequence outside using the Kinect camera (Fig. 2). The natural lighting causes
Kinect pose estimation to fail on almost every frame of the sequence. In contrast,
FlowCap recovers qualitatively good 2D pose.

3. Cellphone camera. A truly portable system for human pose estimation
would open up many applications. Figure 4a shows FlowCap run on video from a
hand-held Samsung Nexus S mobile phone. Despite the camera-motion removal
step (Sec. 4), residual background flow is observable in the sequence. Nonetheless,
the estimated 2D poses are qualitatively good. This is a proof of concept since
our software is not designed to run on a phone and all processing is done off-line.

4. Television. We do not claim to have a complete solution for human pose
estimation from archival data but Fig. 4b shows a few results on the TV series
“Buffy the Vampire Slayer” and “Friends.” Results on videos with mostly-frontal
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Fig. 3: a) Ground truth evaluation. Average (and std) absolute marker dis-
tance (as in [23]) for Walking and Jog validation sequences in HumanEva for
FlowCap, FlowCap with real-time flow and [27]. b) Failure cases. Lack of
representative data (e.g. long hair), back person’s view, and multiple people.

views of a single moving person are promising. Here we envision FlowCap as part
of a more complex system using multiple cues or as an initialization to a part-
based model like [27].

Running time. Here we have shown a proof of concept system. Each com-
ponent of FlowCap is either real-time now or could be realistically made real
time (flow estimation, part prediction, Kalman filtering, and pose estimation).
The optical flow method of [26] used in most of the experiments has a running
time of 3 seconds in a Nvidia Quadro K4000. We also experimented with a fast
version of the flow code that runs at about 30ms/frame. Despite lower quality
flow, the results in Fig. 3a show that FlowCap performance degrades very little
when using the real-time optical flow. Flow feature extraction and the Random
Forest method are slow; currently taking on the order of ten seconds per frame
in VGA images. However, these can run in super-real-time [21]. The running
times of our Kalman Filter and of the regression to joint space are negligible.

Failure cases and future work. Although we have shown that our system
works well in a number of situations, there is still room for improvement. Fig. 3b
shows that our system would benefit from improving the realism of training
data, better disambiguation between front and back poses or tracking multiple
subjects. An obvious drawback of using only flow is that our system only tracks
body parts that have moved in the past; this could be solved by using image-
based initialization. Other future directions include a multi-camera version [9],
model-based tracking, dealing with background motions and using multi-frame
optical flow features. More sophisticated flow algorithms could also be evaluated.

6 Conclusion

We have demonstrated how optical flow alone can provide information for 2D
human pose estimation. Like range data, it can factor out variations in image
appearance and additionally gives information about the motion of body parts.
We have also demonstrated how flow can be used to detect and track human pose
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a

b

Fig. 4: a) Smartphone FlowCap. Here the video is captured using a hand-held
phone camera. This results in overall flow due to rotation and translation of the
camera. Despite this, part estimates remain good and pose is well estimated. b)
Archival video. Results on archival data from series Friends and Buffy. Ground
truth shown in red, [27] in yellow, FlowCap part centers in white.

in monocular videos such as television shows. This demonstrates a simple proof
of the concept that flow offers something like the appearance invariance of depth
while being available from ordinary video. The application of the techniques
from [21] to monocular flow fields is non-obvious since our system deals with
vanishing flow when a body part is static by exploiting the lack of flow. Zero
flow is bad for pose estimation but good for tracking and we exploit this duality.
The 2D predictions are surprisingly good in a range of complex videos. Because
no special hardware is required, optical flow may be a useful component in pose
estimation, opening up more widespread applications.

While we only use optical flow as input, future work should include additional
2D image cues. Head, feet, and hand detectors could readily be incorporated as,
for that matter, depth data from a range sensor or stereo system. Alternatively,
FlowCap could be used as a complementary source of information for other
pose estimation and tracking methods. For example, we could use FlowCap to
initialize more precise model-based trackers. In addition to providing pose, we
provide an initial segmentation of the image into regions corresponding to parts.
This evidence could readily be incorporated in to existing 2D pose trackers.
While our training flow is generated from bodies that are unclothed, we find
it generalizes to clothed people. Still, we could simulate sequences of people in
clothing (e.g. as in [14]) or use real video of clothed people with ground truth.
We could train also FlowCap for specific applications such as TV shows, sports,
or video games by constructing training sets with specific motions. Since we start
with 3D pose, it would be interesting to directly try to estimate 3D pose, and
possibly body shape, from flow (and other cues). Finally our training data could
be used to directly train a CNN to estimate pose from flow (and image data).
This is an exciting direction that our public dataset2 will help support.

2 http://ps.is.tuebingen.mpg.de/project/FlowCap
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