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Abstract

We address the unsupervised learning of several intercon-
nected problems in low-level vision: single view depth predic-
tion, camera motion estimation, optical flow, and segmenta-
tion of a video into the static scene and moving regions. Our
key insight is that these four fundamental vision problems are
coupled through geometric constraints. Consequently, learn-
ing to solve them together simplifies the problem because the
solutions can reinforce each other. We go beyond previous
work by exploiting geometry more explicitly and segment-
ing the scene into static and moving regions. To that end,
we introduce Competitive Collaboration, a framework that
facilitates the coordinated training of multiple specialized
neural networks to solve complex problems. Competitive
Collaboration works much like expectation-maximization,
but with neural networks that act as both competitors to ex-
plain pixels that correspond to static or moving regions, and
as collaborators through a moderator that assigns pixels to
be either static or independently moving. Our novel method
integrates all these problems in a common framework and
simultaneously reasons about the segmentation of the scene
into moving objects and the static background, the camera
motion, depth of the static scene structure, and the optical
flow of moving objects. Our model is trained without any su-
pervision and achieves state-of-the-art performance among
joint unsupervised methods on all sub-problems. .

1. Introduction
Deep learning methods have achieved state-of-the-art re-

sults on computer vision problems with supervision using
large amounts of data [9, 18, 21]. However, for many vision
problems requiring dense, continuous-valued outputs, it is ei-
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Figure 1: Unsupervised Learning of Depth, Camera Mo-
tion, Optical Flow and Motion Segmentation. Left, top to
bottom: sample image, soft masks representing motion seg-
mentation, estimated depth map. Right, top to bottom: static
scene optical flow, segmented flow in the moving regions
and combined optical flow.

ther impractical or expensive to gather ground truth data [6].
We consider four such problems in this paper: single view
depth prediction, camera motion estimation, optical flow,
and motion segmentation. Previous work has approached
these problems with supervision using real [5] and synthetic
data [4]. However there is always a realism gap between
synthetic and real data, and real data is limited or inaccurate.
For example, depth ground truth obtained using LIDAR [6]
is sparse. Furthermore, there are no sensors that provide
ground truth optical flow, so all existing datasets with real
imagery are limited or approximate [1, 6, 13]. Motion seg-
mentation ground truth currently requires manual labeling
of all pixels in an image [26].

Problem. Recent work has tried to address the problem
of limited training data using unsupervised learning [14, 24].
To learn a mapping from pixels to flow, depth, and camera
motion without ground truth is challenging because each
of these problems is highly ambiguous. To address this,
additional constraints are needed and the geometric relations
between static scenes, camera motion, and optical flow can
be exploited. For example, unsupervised learning of depth



and camera motion has been coupled in [38, 22]. They use
an explainability mask to exclude evidence that cannot be
explained by the static scene assumption. Yin et al. [37]
extend this to estimate optical flow as well and use forward-
backward consistency to reason about unexplained pixels.
These methods perform poorly on depth [38] and optical
flow [37] benchmarks. A key reason is that the constraints
applied here do not distinguish or segment objects that move
independently, such as people and cars. More generally,
not all the data in the unlabeled training set will conform
to the model assumptions, and some of it might corrupt
the network training. For instance, the training data for
depth and camera motion should not contain independently
moving objects. Similarly, for optical flow, the data should
not contain occlusions, which disrupt the commonly used
photometric loss.

Idea. A typical real-world scene consists of static regions,
which do not move in the physical world, and moving ob-
jects [36]. Given depth and camera-motion, we can reason
about the static scene in a video sequence. Optical flow, in
contrast, reasons about all parts of the scene. Motion segmen-
tation classifies a scene into static and moving regions. Our
key insight is that these problems are coupled by the geome-
try and motion of the scene; therefore solving them jointly is
synergistic. We show that by learning jointly from unlabeled
data, our coupled networks can partition the dataset and use
only the relevant data, resulting in more accurate results than
learning without this synergy.

Approach. To address the problem of joint unsupervised
learning, we introduce Competitive Collaboration (CC), a
generic framework in which networks learn to collaborate
and compete, thereby achieving specific goals. In our spe-
cific scenario, Competitive Collaboration is a three player
game consisting of two players competing for a resource that
is regulated by a third player, the moderator. As shown in
Figure 2, we introduce two players in our framework, the
static scene reconstructor, R = (D,C), that reasons about
the static scene pixels using depth, D, and camera motion,
C; and a moving region reconstructor, F , that reasons about
pixels in the independently moving regions. These two play-
ers compete for training data by reasoning about static-scene
and moving-region pixels in an image sequence. The compe-
tition is moderated by a motion segmentation network, M ,
that segments the static scene and moving regions, and dis-
tributes training data to the players. However, the moderator
also needs training to ensure a fair competition. Therefore,
the players, R and F , collaborate to train the moderator, M ,
such that it classifies static and moving regions correctly in
alternating phases of the training cycle. This general frame-
work is similar in spirit to expectation-maximization (EM)
but is formulated for neural network training.

Contributions. In summary our contributions are: 1)
We introduce Competitive Collaboration, an unsupervised

learning framework where networks act as competitors and
collaborators to reach specific goals. 2) We show that jointly
training networks with this framework has a synergistic ef-
fect on their performance. 3) To our knowledge, our method
is the first to use low level information like depth, camera
motion and optical flow to solve a segmentation task without
any supervision. 4) We achieve state-of-the-art performance
on single view depth prediction and camera motion estima-
tion among unsupervised methods. We achieve state of art
performance on optical flow among unsupervised methods
that reason about the geometry of the scene, and introduce
the first baseline for fully unsupervised motion segmenta-
tion. We even outperform competing methods that use much
larger networks [37] and multiple refinement steps such as
network cascading [24]. 5) We analyze the convergence
properties of our method and give an intuition of its gener-
alization using mixed domain learning on MNIST [19] and
SVHN [25] digits. All our models and code are available at
https://github.com/anuragranj/cc.

2. Related Work
Our method is a three-player game, consisting of two

competitors and a moderator, where the moderator takes the
role of a critic and two competitors collaborate to train the
moderator. The idea of collaboration can also be seen as
neural expectation maximization [8] where one model is
trained to distribute data to other models. For unsupervised
learning, these ideas have been mainly used to model the data
distribution [8] and have not been applied to unsupervised
training of regression or classification problems.

There is significant recent work on supervised training of
single image depth prediction [5], camera motion estimation
[16] and optical flow estimation [4]. However, as labeling
large datasets for continuous-valued regression tasks is not
trivial, and the methods often rely on synthetic data [4, 23,
28]. Unsupervised methods have tried to independently solve
for optical flow [14, 24, 35] by minimizing a photometric
loss. This is highly underconstrained and thus the methods
perform poorly.

More recent works [22, 32, 33, 37, 38] have approached
estimation of these problems by coupling two or more prob-
lems together in an unsupervised learning framework. Zhou
et al. [38] introduce joint unsupervised learning of ego-
motion and depth from multiple unlabeled frames. To ac-
count for moving objects, they learn an explainability mask.
However, these masks also capture model failures such as
occlusions at depth discontinuities, and are hence not useful
for motion segmentation. Mahjourian et al. [22] use a more
explicit geometric loss to jointly learn depth and camera mo-
tion for rigid scenes. Yin et al. [37] add a refinement network
to [38] to also estimate residual optical flow. The estimation
of residual flow is designed to account for moving regions,
but there is no coupling of the optical flow network with
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Figure 2: The network R = (D,C) reasons about the scene by estimating optical flow over static regions using depth, D, and
camera motion, C. The optical flow network F estimates flow over the whole image. The motion segmentation network, M ,
masks out static scene pixels from F to produce composite optical flow over the full image. A loss, E, using the composite
flow is applied over neighboring frames to train all these models jointly.

the depth and camera motion networks. Residual optical
flow is obtained using a cascaded refinement network, thus
preventing other networks from using flow information to
improve themselves. Therefore, recent works show good
performance either on depth and camera motion [22, 37, 38]
or on optical flow [24], but not on both. Zou et al. [39]
exploit consistency between depth and optical flow to im-
prove performance. The key missing piece that we add is
to jointly learn the segmentation of the scene into static and
independently-moving regions. This allows the networks
to use geometric constraints where they apply and generic
flow where they do not. Our work introduces a framework
where motion segmentation, flow, depth and camera motion
models can be coupled and solved jointly to reason about
the complete geometric structure and motion of the scene.

Competitive Collaboration can be generalized to prob-
lems in which the models have intersecting goals where
they can compete and collaborate. For example, modeling
multi-modal distributions can be accomplished using our
framework, whereby each competitor learns the distribution
over a mode. In fact, the use of expectation-maximization
(EM) in computer vision began with the optical flow problem
and was used to segment the scene into “layers” [15] and
was then widely applied to other vision problems.

3. Competitive Collaboration

In our context, Competitive Collaboration is formulated
as a three-player game consisting of two players compet-
ing for a resource that is regulated by a moderator as illus-
trated in Figure 3. Consider an unlabeled training dataset
D = {Di : i ∈ N}, which can be partitioned into two dis-
joint sets. Two players {R,F} compete to obtain this data
as a resource, and each player tries to partition D to mini-
mize its loss. The partition is regulated by the moderator’s

output m = M(Di),m ∈ [0, 1]Ω, and Ω is the output do-
main of the competitors. The competing players minimize
their loss function LR, LF respectively such that each player
optimizes for itself but not for the group. To resolve this
problem, our training cycle consists of two phases. In the
first phase, we train the competitors by fixing the moderator
network M and minimizing

E1 =
∑
i

∑
Ω

m ·LR(R(Di))+(1−m) ·LF (F (Di)), (1)

where · is used to represent elementwise product throughout
the paper. However, the moderator M also needs to be
trained. This happens in the second phase of the training
cycle. The competitors {R,F} form a consensus and train
the moderator M such that it correctly distributes the data
in the next phase of the training cycle. In the collaboration
phase, we fix the competitors and train the moderator by
minimizing,

E2 = E1 +
∑
i

∑
Ω

LM (Di, R, F ) (2)

where LM is a loss that denotes a consensus between the
competitors {R,F}. Competitive Collaboration can be ap-
plied to more general problems of training multiple task
specific networks. In the Appendix A.1, we show the gener-
alization of our method using an example of mixed domain
learning on MNIST and SVHN digits, and analyze its con-
vergence properties.

In the context of jointly learning depth, camera mo-
tion, optical flow and motion segmentation, the first player
R = (D,C) consists of the depth and camera motion net-
works that reason about the static regions in the scene. The
second player F is the optical flow network that reasons
about the moving regions. For training the competitors, the



Figure 3: Training cycle of Competitive Collaboration: The
moderator M drives two competitors {R,F} (first phase,
left). Later, the competitors collaborate to train the moder-
ator to ensure fair competition in the next iteration (second
phase, right).

motion segmentation network M selects networks (D,C)
on pixels that are static and selects F on pixels that belong
to moving regions. The competition ensures that (D,C) rea-
sons only about the static parts and prevents moving pixels
from corrupting its training. Similarly, it prevents any static
pixels from appearing in the training loss of F , thereby im-
proving its performance in the moving regions. In the second
phase of the training cycle, the competitors (D,C) and F
now collaborate to reason about static scene and moving
regions by forming a consensus that is used as a loss for
training the moderator, M . In the rest of this section, we
formulate the joint unsupervised estimation of depth, camera
motion, optical flow and motion segmentation within this
framework.

Notation. We use {Dθ, Cφ, Fψ,Mχ}, to denote the net-
works that estimate depth, camera motion, optical flow
and motion segmentation respectively. The subscripts
{θ, φ, ψ, χ} are the network parameters. We will omit the
subscripts in several places for brevity. Consider an im-
age sequence I−, I, I+ with target frame I and temporally
neighboring reference frames I−, I+. In general, we can
have many neighboring frames. In our implementation, we
use 5-frame sequences for Cφ and Mχ but for simplicity use
3 frames to describe our approach. We estimate the depth of
the target frame as

d = Dθ(I). (3)

We estimate the camera motion, e, of each of the reference
frames I−, I+ w.r.t. the target frame I as

e−, e+ = Cφ(I−, I, I+). (4)

Similarly, we estimate the segmentation of the target image
into the static scene and moving regions. The optical flow
of the static scene is defined only by the camera motion and
depth. This generally refers to the structure of the scene. The
moving regions have independent motion w.r.t. the scene.
The segmentation masks corresponding to each pair of target
and reference image are given by

m−,m+ = Mχ(I−, I, I+), (5)

where m−,m+ ∈ [0, 1]Ω represent the probabilities of re-
gions being static in spatial pixel domain, Ω. Finally, the net-
work Fψ estimates the optical flow. Fψ works with 2 images
at a time, and its weights are shared while estimating u−, u+,
the backward and forward optical flow1 respectively.

u− = Fψ(I, I−), u+ = Fψ(I, I+). (6)

Loss. We learn the parameters of the networks
{Dθ, Cφ, Fψ,Mχ} by jointly minimizing the energy

E = λRER + λFEF + λMEM + λCEC + λSES , (7)

where {λR, λF , λM , λC , λS} are the weights on the respec-
tive energy terms. The terms ER and EF are the objectives
that are minimized by the two competitors reconstructing
static and moving regions respectively. The competition for
data is driven by EM . A larger weight λM will drive more
pixels towards the static scene reconstructor. The term EC
drives the collaboration, and ES is a smoothness regularizer.
The static scene term, ER minimizes the photometric loss
on the static scene pixels given by

ER =
∑

s∈{+,−}

∑
Ω

ρ
(
I, wc(Is, es, d)

)
·ms (8)

where Ω is the spatial pixel domain, ρ is a robust error func-
tion, and wc warps the reference frames towards the target
frame according to depth d and camera motion e. Similarly,
EF minimizes photometric loss on moving regions

EF =
∑

s∈{+,−}

∑
Ω

ρ
(
I, wf (Is, us)

)
· (1−ms) (9)

where wf warps the reference image using flow u. We show
the formulations for wc, wf in the Appendix A.2 and A.3
respectively. We compute the robust error ρ(x, y) as

ρ(x,y)=λρ
√

(x−y)2+ε2+(1−λρ)

[
1− (2µxµy+c1)(2µxy+c2)

(µ2x+µ
2
y+c1)(σx+σy+c2)

]
(10)

where λρ is a fixed constant and ε = 0.01. The second term
is also known as the structure similarity loss (SSIM) [34]
that has been used in previous work [22, 37], and µx, σx are
the local mean and variance over the pixel neighborhood
with c1 = 0.012 and c2 = 0.032.

The loss EM minimizes the cross entropy, H , between
the masks and a unit tensor regulated by λM

EM =
∑

s∈{+,−}

∑
Ω

H(1,ms). (11)

A larger λM gives preference to the static scene reconstructor
R, biasing the scene towards being static.

1Note that this is different from the forward and backward optical flow
in the context of two-frame estimation.



Let ν(e, d) represent the optical flow induced by camera
motion e and depth d, as described in the Appendix A.2. The
consensus loss EC drives the collaboration and constrains
the masks to segment moving objects by taking a consensus
between flow of the static scene given by ν(e, d) and optical
flow estimates from Fψ . It is given by

EC =
∑

s∈{+,−}

∑
Ω

H
(
IρR<ρF ∨ I||ν(es,d)−us||<λc ,ms

)
(12)

where I ∈ {0, 1} is an indicator function and equals 1 if
the condition in the subscript is true. The first indicator
function favors mask assignments to the competitor that
achieves lower photometric error on a pixel by comparing
ρR = ρ(I, wc(Is, es, d)) and ρF = ρ(I, wf (Is, us)). In the
second indicator function, the threshold λc forces I = 1,
if the static scene flow ν(e, d) is close to the optical flow
u, indicating a static scene. The symbol ∨ denotes logical
OR between indicator functions. The consensus loss EC
encourages a pixel to be labeled as static if R has a lower
photometric error than F or if the induced flow of R is
similar to that of F . Finally, the smoothness term ES acts as
a regularizer on depth, segmentations and flow,

ES =
∑
Ω

||λe∇d||2 + ||λe∇u−||2 + ||λe∇u+||2

+||λe∇m−||2 + ||λe∇m+||2, (13)

where λe = e−∇I (elementwise) and ∇ is the first deriva-
tive along spatial directions [29]. The term λe ensures that
smoothness is guided by edges of the images.

Inference. The depth d and camera motion e are directly
inferred from network outputs. The motion segmentation
m∗ is obtained by the output of mask network Mχ and the
consensus between the static flow and optical flow estimates
from Fχ. It is given by

m∗ = Im+·m−>0.5 ∨ I||ν(e+,d)−u+||<λc . (14)

The first term takes the intersection of mask probabilities in-
ferred by Mχ using forward and backward reference frames.
The second term takes a consensus between flow estimated
from R = (Dθ, Cφ) and Fψ to reason about the masks.
The final masks are obtained by taking the union of both
terms. Finally, the full optical flow, u∗, between (I, I+) is
a composite of optical flows from the static scene and the
independently moving regions given by

u∗ = Im∗>0.5 · ν(e+, d) + Im∗≤0.5 · u+. (15)

The loss in Eq. (7) is formulated to minimize the reconstruc-
tion error of the neighboring frames. Two competitors, the
static scene reconstructor R = (Dθ, Cφ) and moving region
reconstructor Fψ minimize this loss. The reconstructor R

reasons about the static scene using Eq. (8) and the recon-
structor Fψ reasons about the moving regions using Eq. (9).
The moderation is achieved by the mask network, Mχ using
Eq. (11). Furthermore, the collaboration between R,F is
driven using Eq. (12) to train the network Mχ.

If the scenes are completely static, and only the camera
moves, the mask forces (Dθ, Cφ) to reconstruct the whole
scene. However, (Dθ, Cφ) are wrong in the independently
moving regions of the scene, and these regions are recon-
structed using Fψ . The moderator Mχ is trained to segment
static and moving regions correctly by taking a consensus
from (Dθ, Cφ) and Fψ to reason about static and moving
parts on the scene, as seen in Eq. (12). Therefore, our train-
ing cycle has two phases. In the first phase, the moderator
Mχ drives competition between two models (Dθ, Cφ) and
Fψ using Eqs. (8, 9). In the second phase, the competitors
(Dθ, Cφ) and Fψ collaborate together to train the moderator
Mχ using Eqs. (11,12).

4. Experiments

Network Architecture. For the depth network, we experi-
ment with DispNetS [38] and DispResNet where we replace
convolutional blocks with residual blocks [10]. The net-
work Dθ takes a single RGB image as input and outputs
depth. For the flow network, Fψ, we experiment with both
FlowNetC [4] and PWC-Net [31]. The PWC-Net uses the
multi-frame unsupervised learning framework from Janai et
al. [12]. The network Fψ computes optical flow between
a pair of frames. The networks Cφ,Mχ take a 5 frame
sequence (I−−, I−, I, I+, I++) as input. The mask net-
work Mχ has an encoder-decoder architecture. The encoder
consists of stacked residual convolutional layers. The de-

Result: Trained Network Parameters, (θ, φ, ψ, χ)
Define λ = (λR, λF , λM , λC);
Randomly initialize (θ, φ, ψ, χ);
Update (θ, φ) by jointly training (Dθ, Cφ) with
λ = (1.0, 0.0, 0.0, 0.0);

Update ψ by training Fψ with λ = (0.0, 1.0, 0.0, 0.0);
Update χ by jointly training (Dθ, Cφ, Fψ,Mχ) with
λ = (1.0, 0.5, 0.0, 0.0);

Loop
Competition Step

Update θ, φ by jointly training (Dθ, Cφ,
Fψ,Mχ) with λ = (1.0, 0.5, 0.05, 0) ;

Update ψ by jointly training (Dθ, Cφ, Fψ,Mχ)
with λ = (0.0, 1.0, 0.005, 0) ;

Collaboration Step
Update χ by jointly training (Dθ, Cφ, Fψ,Mχ)
with λ = (1.0, 0.5, 0.005, 0.3) ;

EndLoop
Algorithm 1: Network Training Algorithm



Figure 4: Visual results. Top to bottom: Sample image, estimated depth, soft consensus masks, motion segmented optical
flow and combined optical flow.

coder has stacked upconvolutional layers to produce masks
(m−−,m−,m+,m++) of the reference frames. The cam-
era motion network Cφ consists of stacked convolutions
followed by adaptive average pooling of feature maps to
get the camera motions (e−−, e−, e+, e++). The networks
Dθ, Fψ,Mχ output their results at 6 different spatial scales.
The predictions at the finest scale are used. The highest scale
is of the same resolution as the image, and each lower scale
reduces the resolution by a factor of 2. We show the network
architecture details in the Appendix A.4.

Network Training. We use raw KITTI sequences [6] for
training using Eigen et al.’s split [5] that is consistent across
related works [5, 20, 22, 37, 38, 39]. We train the net-
works with a batch size of 4 and learning rate of 10−4 us-
ing ADAM [17] optimization. The images are scaled to
256× 832 for training. The data is augmented with random
scaling, cropping and horizontal flips. We use Algorithm
1 for training. Initially, we train (Dθ, Cφ) with only pho-
tometric loss over static pixels ER and smoothness loss
ES while other loss terms are set to zero. Similarly, we
train Fψ independently with photometric loss over all pix-
els and smoothness losses. The models (Dθ, Cφ), Fψ at
this stage are referred to as ‘basic’ models in our exper-
iments. We then learn Mχ using the joint loss. We use
λR = 1.0, λF = 0.5 for joint training because the static
scene reconstructor R uses 4 reference frames in its loss,
whereas the optical flow network F uses 2 frames. Hence,
these weights normalize the loss per neighboring frame. We
iteratively train (Dθ, Cφ), Fψ,Mχ using the joint loss while
keeping the other network weights fixed. The consensus
weight λC = 0.3 is used only while training the mask net-
work. Other constants are fixed with λS = 0.005, and
threshold in Eq. (14), λc = 0.001. The constant λρ = 0.003
regulates the SSIM loss and is chosen empirically. We it-
eratively train the competitors (Dθ, Cφ), Fψ and moderator
Mχ for about 100,000 iterations at each step until validation
error saturates.

Monocular Depth and Camera Motion Estimation. We
obtain state of the art results on single view depth prediction
and camera motion estimation as shown in Tables 1 and 3.
The depth is evaluated on the Eigen et al. [5] split of the raw
KITTI dataset [6] and camera motion is evaluated on the
KITTI Odometry dataset [6]. These evaluation frameworks
are consistent with previous work [5, 20, 22, 37]. All depth
maps are capped at 80 meters. As shown in Table 1, by train-
ing our method only on KITTI [6], we get similar or better
performance than competing methods like [37, 39] that use
a much bigger Resnet-50 architecture [10] and are trained
on the larger Cityscapes dataset [3]. Using Cityscapes in our
training further improves our performance on depth estima-
tion benchmarks (cs+k in Table 1).

Ablation studies on depth estimation are shown in Table
2. In the basic mode, our network architecture, DispNet for
depth and camera motion estimation is most similar to [38]
and this is reflected in the performance of our basic model.
We get some performance improvements by adding the SSIM
loss [34]. However, we observe that using the Competitive
Collaboration (CC) framework with a joint loss results in
larger performance gains in both tasks. Further improve-
ments are obtained by using a better network architecture,
DispResNet. Greater improvements in depth estimation are
obtained when we use a better network for flow, which shows
that improving on one task improves the performance of the
other in the CC framework (row 4 vs 5 in Table 2).

The camera motion estimation also shows similar perfor-
mance trends as shown in Table 3. Using a basic model,
we achieve similar performance as the baseline [38], which
improves with the addition of the SSIM loss. Using the CC
framework leads to further improvements in performance.

In summary, we show that joint training using CC boosts
performance of single view depth prediction and camera mo-
tion estimation. We show qualitative results in Figure 4.
In the Appendix, we show additional evaluations using
Make3D dataset [30] (A.6) and more qualitative results (A.5).



Error Accuracy, δ
Method Data AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Eigen et al. [5] coarse k 0.214 1.605 6.563 0.292 0.673 0.884 0.957
Eigen et al. [5] fine k 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. [20] k 0.202 1.614 6.523 0.275 0.678 0.895 0.965
Zhou et al. [38] cs+k 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Mahjourian et al. [22] cs+k 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Geonet-Resnet [37] cs+k 0.153 1.328 5.737 0.232 0.802 0.934 0.972
DF-Net [39] cs+k 0.146 1.182 5.215 0.213 0.818 0.943 0.978
CC (ours) cs+k 0.139 1.032 5.199 0.213 0.827 0.943 0.977
Zhou et al.* [38] k 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Mahjourian et al. [22] k 0.163 1.240 6.220 0.250 0.762 0.916 0.968
Geonet-VGG [37] k 0.164 1.303 6.090 0.247 0.765 0.919 0.968
Geonet-Resnet [37] k 0.155 1.296 5.857 0.233 0.793 0.931 0.973
Godard et el. [7] k 0.154 1.218 5.699 0.231 0.798 0.932 0.973
DF-Net [39] k 0.150 1.124 5.507 0.223 0.806 0.933 0.973
CC (ours) k 0.140 1.070 5.326 0.217 0.826 0.941 0.975

Table 1: Results on Depth Estimation. Supervised methods are shown in the first rows. Data refers to the training set:
Cityscapes (cs) and KITTI (k). Zhou el al.* shows improved results from their github page.

Error Accuracy, δ
Method Data Net D Net F AbsRel SqRel RMS RMSlog <1.25 <1.252 <1.253

Basic k DispNet - 0.184 1.476 6.325 0.259 0.732 0.910 0.967
Basic + ssim k DispNet - 0.168 1.396 6.176 0.244 0.767 0.922 0.971
CC + ssim k DispNet FlowNetC 0.148 1.149 5.464 0.226 0.815 0.935 0.973
CC + ssim k DispResNet FlowNetC 0.144 1.284 5.716 0.226 0.822 0.938 0.973
CC + ssim k DispResNet PWC Net 0.140 1.070 5.326 0.217 0.826 0.941 0.975
CC + ssim cs+k DispResNet PWC Net 0.139 1.032 5.199 0.213 0.827 0.943 0.977

Table 2: Ablation studies on Depth Estimation. Joint training using Competitive Collaboration and better architectures improve
the results. The benefits of CC can be seen when depth improves by using a better network for flow (row 4 vs 5).

Method Sequence 09 Sequence 10
ORB-SLAM (full) 0.014 ± 0.008 0.012 ± 0.011
ORB-SLAM (short) 0.064 ± 0.141 0.064 ± 0.130
Mean Odometry 0.032 ± 0.026 0.028 ± 0.023
Zhou et al. [38] 0.016 ± 0.009 0.013 ± 0.009
Mahjourian et al. [22] 0.013 ± 0.010 0.012 ± 0.011
Geonet [37] 0.012 ± 0.007 0.012 ± 0.009
DF-Net [39] 0.017 ± 0.007 0.015 ± 0.009
Basic (ours) 0.022 ± 0.010 0.018 ± 0.011
Basic + ssim (ours) 0.017 ± 0.009 0.015 ± 0.009
CC + ssim (ours) 0.012 ± 0.007 0.012 ± 0.008

Table 3: Results on Camera Pose Estimation.

Optical Flow Estimation. We compare the performance
of our approach with competing methods using the KITTI
2015 training set [6] to be consistent with previous work
[24, 37]. We obtain state of the art performance among joint
methods as shown in Table 4. Unsupervised fine tuning

(CC-uft) by setting λM = 0.02 gives more improvements
than CC as masks now choose the best flow between R and
F without being overconstrained to choose R. In contrast,
UnFlow-CSS [24] uses 3 cascaded networks to refine optical
flow at each stage. Geonet [37] and DF-Net [39] are more
similar to our architecture but use a larger ResNet-50 archi-
tecture. Back2Future [12] performs better than our method
in terms of outlier error, but not in terms of average end point
error due to use of additional data.

In Table 5, we observe that training the static scene recon-
structor R or moving region reconstructor F independently
leads to worse performance. This happens becauseR can not
reason about dynamic moving objects in the scene. Similarly
F is not as good as R for reasoning about static parts of the
scene, especially in occluded regions. Using them together,
and compositing the optical flow from both as shown in
Eq. (15) leads to a large improvement in performance. More-
over, using better network architectures further improves the
performance under the CC framework. We show qualitative
results in Figure 4 and in the Appendix A.5.



Train Test
Method EPE Fl Fl
FlowNet2 [11] 10.06 30.37 % -
SPyNet [27] 20.56 44.78% -
UnFlow-C [24] 8.80 28.94% 29.46%
UnFlow-CSS [24] 8.10 23.27% -
Back2Future [12] 6.59 - 22.94%
Back2Future* [12] 7.04 24.21% -
Geonet [37] 10.81 - -
DF-Net [39] 8.98 26.01% 25.70%
CC (ours) 6.21 26.41% -
CC-uft (ours) 5.66 20.93% 25.27%

Table 4: Results on Optical Flow. We also compare with
supervised methods (top 2 rows) that are trained on synthetic
data only; unsupervised methods specialized for optical flow
(middle 3 rows) and joint methods that solve more than one
task (bottom 4 rows). * refers to our Pytorch implementation
used in our framework which gives slightly lower accuracy.

Average EPE
Method Net D Net F SP MP Total
R DispNet - 7.51 32.75 13.54
F - FlowNetC 15.32 6.20 14.68
CC DispNet FlowNetC 6.35 6.16 7.76
CC DispResNet PWC Net 5.67 5.04 6.21

Table 5: Ablation studies on Flow estimation. SP, MP refer
to static scene and moving region pixels. EPE is computed
over KITTI 2015 training set. R,F are trained independently
without CC.

Motion Segmentation. We evaluate the estimated motion
segmentations using the KITTI 2015 training set [6] that pro-
vides ground truth segmentation for moving cars. Since our
approach does not distinguish between different semantic
classes while estimating segmentation, we evaluate segmen-
tations only on car pixels. Specifically, we only consider car
pixels and compute Intersection over Union (IoU) scores for
moving and static car pixels. In Table 6, we show the IoU
scores of the segmentation masks obtained using our tech-
nique under different conditions. We refer to the masks ob-
tained with the motion segmentation network

(
Im−m+>0.5

)
as ‘MaskNet’ and refer to the masks obtained with flow
consensus

(
I||ν(e+,d)−u+||<λc

)
as ‘Consensus’. The final

motion segmentation masks m∗ obtained with the intersec-
tion of the above two estimates are referred to as ‘Joint’
(Eq. 14). IoU results indicate substantial IoU improvements
with ‘Joint’ masks compared to both ‘MaskNet’ and ‘Con-
sensus’ masks, illustrating the complementary nature of dif-
ferent masks. Qualitative results are shown in Figure 4 and
in the Appendix A.5.

We thank Frederik Kunstner for verifying the proofs, Clément Pinard
for his code, Georgios Pavlakos for paper revisions, Joel Janai for optical
flow visualizations, and Clément Gorard for Make3d evaluation code. MJB
is a part-time employee of Amazon; has financial interests in Amazon and

Overall Static Car Moving Car

MaskNet 41.64 30.56 52.71
Consensus 51.52 47.30 55.74
Joint 56.94 55.77 58.11

Table 6: Motion Segmentation Results. Intersection Over
Union (IoU) scores on KITTI2015 training dataset images
computed over car pixels.

5. Conclusions and Discussion
Typically, learning to infer depth from a single image

requires training images with ground truth depth scans, and
learning to compute optical flow relies on synthetic data,
which may not generalize to real image sequences. For static
scenes, observed by a moving camera, these two problems
are related by camera motion; depth and camera motion
completely determine the 2D optical flow. This holds true
over several frames if the scene is static and only the camera
moves. Thus by combining depth, camera, and flow estima-
tion, we can learn single-image depth by using information
from several frames during training. This is particularly
critical for unsupervised training since both depth and op-
tical flow are highly ill-posed. Combining evidence from
multiple tasks and multiple frames helps to synergistically
constrain the problem. This alone is not enough, however,
as real scenes contain multiple moving objects that do not
conform to static scene geometry. Consequently, we also
learn to segment the scene into static and moving regions
without supervision. In the independently moving regions, a
generic flow network learns to estimate the optical flow.

To facilitate this process we introduce Competitive Col-
laboration in which networks both compete and cooperate.
We demonstrate that this results in top performance among
unsupervised methods for all subproblems. Additionally, the
moderator learns to segment the scene into static and moving
regions without any direct supervision.

Future Work. We can add small amounts of supervised
training, with which we expect to significantly boost perfor-
mance on benchmarks, cf. [24]. We could use, for example,
sparse depth and flow from KITTI and segmentation from
Cityscapes to selectively provide ground truth to different
networks. A richer segmentation network together with
semantic segmentation should improve non-rigid segmenta-
tion. For automotive applications, the depth map formula-
tion should be extended to a world coordinate system, which
would support the integration of depth information over long
image sequences. Finally, as shown in [36], the key ideas
of using layers and geometry apply to general scenes be-
yond the automotive case and we should be able to train this
method to work with generic scenes and camera motions.

Meshcapde GmbH; and received research gift funds from Intel, Nvidia,
Adobe, Facebook, and Amazon. MJB’s research was performed solely at,
and funded solely by MPI. This project was supported by NVIDIA grants.
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A. Appendix
A.1. Competitive Collaboration as a General Learn-

ing Framework

Competitive collaboration (CC) can be seen as a general
learning framework for training multiple task-specific net-
works. To showcase this generality, we demonstrate CC on
a mixed-domain classification problem in Section A.1.1 and
analyze CC convergence properties in Section A.1.2.

A.1.1 Mixed Domain Classification

Digit classification is the task of classifying a given image I
into one of the 10 digit classes t ∈ {0, 1, 2, .., 9}. Two most
widely used datasets for digit classification include images
of the postal code digits, MNIST [19] and street view house
numbers, SVHN [25]. For our setup, we take the samples
from both of the datasets, and shuffle them together. This
means that, although an image and a target, (Ii, ti) form a
pair, there is no information if the digits came from MNIST
or SVHN.

We now train our model under Competitive Collaboration
framework given the mixed-domain dataset MNIST+SVHN,
a mixture of MNIST and SVHN. The model consists of two
networks Rx and Fx that compete with each other regulated
by a moderatorMy which assigns training data to each of the
competitors. Here, x denotes the combined weights of the
two competitor networks (R,F ) and y denotes the weight of
the moderator network M . The networks are trained using
an alternate optimization procedure consisting of two phases.
In the competition phase, we train the competitors by fixing
the moderator M and minimizing,

E1 =
∑
i

mi ·H(Rx(Ii), ti) + (1−mi) ·H(Fx(Ii), ti)

(16)
where mi = My(Ii) ∈ [0, 1] is the output of the mod-
erator and is the probability of assigning a sample to Rx.
H(Rx(Ii), ti) is the cross entropy classification loss on the
network Rx and a similar loss is applied on network Fx.

During the collaboration phase, we fix the competitors
and train the moderator by minimizing,

E2 = E1+∑
i

λ ·

{
− log(mi + ε) if LRi < LFi ,

− log(1−mi + ε) if LRi ≥ LFi .
(17)

where LRi = H(Rx(Ii), ti) is the cross entropy loss
from network Rx and similarly LFi = H(Fx(Ii), ti). In
addition to the above loss function E1, we use an additional
constraint on the moderator output that encourages the vari-
ance of m, σ2

m = Σi(mi − m̄)2 to be high, where m̄ is the
mean of m within a batch. This encourages the modera-

Training M S M+S

R Basic 1.34 11.88 8.96
R CC 1.41 11.55 8.74
F CC 1.24 11.75 8.84
R,F,M CC 1.24 11.55 8.70

Table 7: Percentage classification errors. M and S refer to
MNIST and SVHN respectively.

MNIST SVHN

R 0% 100%
F 100% 0%

Table 8: Assignments of moderator to each of the competi-
tors.

tor to assign images to both the models, instead of always
assigning them to a single model.

In an ideal case, we expect the moderator to correctly
classify MNIST digits from SVHN digits. This would en-
able each of the competitors to specialize on either MNIST
or SVHN, but not both. In such a case, the accuracy of
the model under CC would be better than training a single
network on the MNIST+SVHN mixture.

Experimental Results For simplicity, we use a CNN with
2 convolutional layers followed by 2 fully-connected layers
for both the digit classification networks (R,F ) as well as
the moderator network M . Each of the convolutional layers
use a kerel size of 5 and 40 feature maps. Each of the fully
connected layers have 40 neurons.

We now compare the performance of the CC model on
MNIST+SVHN mixture with training a single network on
the same dataset. We see that our performance is better
on the mixture dataset as well as individual datasets (see
Table 7). As shown in Table 7, the network R specializes on
SVHN digits and network F specializes on MNIST digits.
By using the networks (R,F,M), we get the best results
as M picks the specialized networks depending on the data
sample.

We also examine the classification accuracy of the mod-
erator on MNIST and SVHN digits. We observe that mod-
erator can accurately classify the digits into either MNIST
or SVHN without any labels (see Table 8). The moderator
learns to assign 100% of MNIST digits to F and 100% of
SVHN digits to R. This experiment provides further evi-
dence to support the notion that CC can be generalized to
other problems.



A.1.2 Theoretical Analysis

Competitive Collaboration is an alternating optimization
procedure. In the competition phase, we minimize E1 with
respect to x; in the collaboration phase we minimize E2 =
E1 + λLM with respect to y. One might rightfully worry
about the convergence properties of such a procedure, where
we optimize different objectives in the alternating steps.

It is important to note that—while E1 and E2 are differ-
ent functions—they are in fact closely related. For example,
they have the same minimizer with respect to the moderator
output, namely assigning all the mass to the network with
lower loss. Ideally, we would want to use E1 as the objec-
tive function in both phases, but resort to using E2 in the
collaboration phase, since it has empirically proven to be
more efficient in pushing the moderator towards this optimal
choice.

Hence, while we are minimizing different objective func-
tions in the competition and collaboration phases, they are
closely related and have the same “goal”. In the follow-
ing, we formalize this mathematically by identifying gen-
eral assumptions on how “similar” two functions have to
be for such an alternating optimization procedure to con-
verge. Roughly speaking, we need the gradients of the two
objectives to form an acute angle and to be of similar scales.
We will then discuss to what extent these assumptions are
satisfied in the case of Competitive Collaboration. Proofs
are outsourced to the end of this section for readability.

General Convergence Theorem Assume we have two
functions

f, g : Rn × Rm → R (18)

and are performing alternating gradient descent updates of
the form

xt+1 = xt − α∇xf(xt, yt), (19)
yt+1 = yt − β∇yg(xt+1, yt). (20)

We consider the case of single alternating gradient descent
for convenience in the analysis. With minor modifications,
the following analysis also extends to the case of multiple
gradient descent updates (or even exact minimization) in
each of the alternating steps. The following Theorem formu-
lates assumptions on f and g under which such an alternating
optimization procedure converges to a first-order stationary
point of f .

Theorem 1. Assume f is lower-bounded and x 7→
∇xf(x, y) is Lipschitz continuous with constant G1 for ev-
ery y and y 7→ ∇yf(x, y) is Lipschitz continuous with con-
stant G2(x). Assume α ≤ 2L−1

1 . If there is a constant

B > 0 such that

β〈∇yf(x, y),∇yg(x, y)〉 ≥G2(x)β2

2
‖∇yg(x, y)‖2

+B‖∇yf(x, y)‖2
(21)

then (xt, yt) converges to a first-order stationary point of f .

Eq. (21) is a somewhat technical assumption that lower-
bounds the inner product of the two gradients in terms of
their norms and, thus, encodes that these gradients have to
form an acute angle and be of similar scales.

Convergence of Competitive Collaboration We now dis-
cuss to what extent the assumptions for Theorem 1 are satis-
fied in the case of Competitive Collaboration. For the math-
ematical considerations to follow, we introduce a slightly
more abstract notation for the objective functions of Com-
petitive Collaboration. For a single data point, E1 has the
form

f(x, y) = M(y)LR(x) + (1−M(y))LF (x), (22)

where M(y) ∈ [0, 1] is a function of y (the weights of the
moderator) and LR(x), LF (x) > 0 are functions of x (the
weights of the two competing networks). The loss function
E2 reads

g(x, y) = f(x, y)

+ λ ·

{
− log(M(y) + ε) if LR(x) < LF (x),

− log(1−M(y) + ε) if LR(x) ≥ LF (x).

(23)

The following Proposition shows that f and g satisfy the
conditions of Theorem 1 under certain assumptions.

Proposition 1. Let f and g be defined by Equations (22) and
(23), respectively. If M(y), LR(x) and LF (x) are Lipschitz
smooth, then f and g fulfill the assumptions of Theorem 1.

The smoothness conditions on M(y), LR(x), LF (x) are
standard as they are, for example, needed to guarantee con-
vergence of gradient descent for optimizing any of these
objective functions individually.

This Proposition shows that the objectives for individual
data points satisfy Theorem 1. In practice, however, we are
concerned with multiple data points and objectives of the
form

f(x, y) =
1

n

n∑
i=1

f (i)(x, y), (24)

where

f (i)(x, y) =M (i)(y)L
(i)
R (x)

+ (1−M (i)(y))L
(i)
F (x),

(25)



and

g(x, y) =
1

n

n∑
i=1

g(i)(x, y), (26)

where

g(i)(x, y) = f (i)(x, y)

+ λ ·

{
− log(M (i)(y) + ε) if L(i)

R (x) < L
(i)
F (x),

− log(1−M (i)(y) + ε) if L(i)
R (x) ≥ L(i)

F (x).

(27)

While we have just found a suitable lower bound on the inner
product of ∇yf (i) and ∇yg(i), unfortunately, the sum struc-
ture of ∇yf and ∇yg makes it really hard to say anything
definitive about the value of their inner product. It is plausi-
ble to assume that ∇yf and ∇yg will be sufficiently close
to guarantee convergence in practical settings. However, the
theory developed in Theorem 1 does not directly apply.

A.1.3 Proofs

Proof of Theorem 1. The update of x is a straight-forward
gradient descent step on f . Using the Lipschitz bound on f ,
we get

f(xt+1, yt) ≤ f(xt, yt)− α〈∇xf(xt, yt),∇xf(xt, yt)〉

+
G1α

2

2
‖∇xf(xt, yt)‖2

= f(xt, yt)−
(
α− G1α

2

2

)
‖∇xf(xt, yt)‖2

≤ f(xt, yt)−A‖∇xf(xt, yt)‖2

(28)

with A > 0 due to our assumption on α. For the update of y,
we have

f(xt+1, yt+1) ≤ f(xt+1, yt)

− β〈∇yf(xt+1, yt),∇yg(xt+1, yt)〉

+
β2G2(x)

2
‖∇yg(xt+1, yt)‖2.

(29)

Using the assumption on the inner product, this yields

f(xt+1, yt+1) ≤ f(xt+1, yt)−B‖∇yf(xt+1, yt)‖2.
(30)

Combining the two equations, we get

f(xt+1, yt+1)

≤ f(xt, yt)−A‖∇xf(xt, yt)‖2 −B‖∇yf(xt+1, yt)‖2

≤ f(xt, yt)− C
(
‖∇xf(xt, yt)‖2 + ‖∇yf(xt+1, yt)‖2

)
.

(31)

with C = max(A,B). We define Gt = ‖∇xf(xt, yt)‖2 +
‖∇yf(xt+1, yt)‖2 and rewrite this as

Gt ≤
f(xt, yt)− f(xt+1, yt+1)

C
(32)

Summing this equation for t = 0, . . . , T , we get
T∑
t=0

Gt ≤
f(x0, y0)− f(xT+1, yT+1)

C
. (33)

Since f is lower-bounded, this implies Gt → 0, which in
turn implies convergence to a first-order stationary point of
f .

Proof of Proposition 1. The gradient of f with respect to x
is

∇xf(x, y) = M(y)∇LR(x) + (1−M(y))∇LF (x) (34)

Since M(y) is bounded, ∇xf is Lipschitz continuous in x
given that LR and LF are Lipschitz smooth.

For the assumptions on the y-gradients, we fix x and
treat the two cases in the definition of g separately. We only
consider the case LR(x) < LF (x) here, the reverse case is
completely analogous. Define L(x) = LF (x)−LR(x) > 0.
The gradient of f with respect to y is

∇yf(x, y) = −L(x)∇M(y) (35)

and is Lipschitz continuous with constant G2(x) = | −
L(x)|G = L(x)G, where G is the Lipschitz constant of
M(y). We have

∇yg(x, y) = −
(
L(x) +

λ

M(y) + ε

)
∇M(y). (36)

The inner product of the two gradients reads

〈∇yf(x, y),∇yg(x, y)〉

= L(x)

(
L(x) +

λ

M(y) + ε

)
‖∇M(y)‖2,

(37)

and for the gradient norms we get

‖∇yf(x, y)‖2 = L(x)2‖∇M(y)‖2, (38)

as well as

‖∇yg(x, y)‖2 =

(
L(x) +

λ

M(y) + ε

)2

‖∇M(y)‖2.

(39)
Plugging everything into the inner product assumption of
Theorem 1 and simplifying yields

β

(
L(x) +

λ

M(y) + ε

)
≥ Gβ2

2

(
L(x) +

λ

M(y) + ε

)2

+BL(x)

(40)

Since M , LR and LF are bounded, one easily finds a choice
for β and B that satisfies this condition.



A.2. The camera warping function wc and static
flow transformer ν

The network C predicts camera motion that consist
of camera rotations sinα, sinβ, sinγ, and translations
tx, ty, tz . Thus e = (sinα, sinβ, sinγ, tx, ty, tz). Given
camera motion and depth d, we transform the image coordi-
nates (x, y) into world coordinates (X,Y, Z).

X = d
f (x− cx) (41)

Y = d
f (y − cy) (42)
Z = d (43)

where (cx, cy, f) constitute the camera intrinsics. We now
transform the world coordinates given the camera rotation
and translation.

X′ = RxRyRzX + t

where (RxRyRz, t) ∈ SE3 denote 3D rotation and transla-
tion, and X = [X,Y, Z]T . Hence, in image coordinates

x′ =
f

Z
+ cx (44)

y′ =
f

Z
+ cy (45)

We can now apply the warping as,

wc
(
I(x, y), e, d

)
= I(x′, y′). (46)

The static flow transformer is defined as,

ν(e, d) = (x′ − x, y′ − y) (47)

A.3. The flow warping function, wf
The flow warping function wf is given by

wf
(
I(x, y), ux, uy

)
= I(x+ ux, y + uy) (48)

where, (ux, uy) is the optical flow, and (x, y) is the spatial
coordinate system.

A.4. Network Architectures

We briefly describe the network architectures below. For
details, please refer to Figure 6.

Depth NetworkD. Our depth network is similar to Disp-
NetS [23] and outputs depths at 6 different scales. Each con-
volution and upconvolution is followed by a ReLU except
the prediction layers. The prediction layer at each scale has a
non-linearity given by 1/(α sigmoid(x) + β). The architec-
ture of DispResNet is obtained by replacing convolutional
blocks in DispNet by residual blocks [10].

Camera Motion Network C. The camera motion net-
work consists of 8 convolutional layers, each of stride 2

Image Ground Truth Prediction

Figure 5: Qualitative results on Make3D test set.

followed by a ReLU activation. This is followed by a convo-
lutional layer of stride 1, whose feature maps are averaged
together to get the camera motion.

Flow Network F . We use FlowNetC architecture [4]
with 6 output scales of flow and is shown in Figure 6. All
convolutional and upconvolutional layers are followed by
a ReLU except prediction layers. The prediction layers
have no activations. For PWC Net, we use the network
architecture from Janai et al. [12].

Mask Network M . The mask network has a U-Net [4]
architecture. The encoder is similar to the camera motion
with 6 convolutional layers. The decoder has 6 upconvolu-
tional layers. Each of these layers have ReLU activations.
The prediction layers use a sigmoid.

A.5. Qualitative Results

The qualitative results of the predictions are shown in
Figure 7. We would like to point out that, our method is able
to segment the moving car, and not the parked cars on the
roads. In addition, it segments other moving objects, such as
the bicyclist.

We compare the qualitative results for single image depth
prediction in Figure 8. We also contrast our results with
basic models that were trained independently without a joint
loss in Figure 9. We observe that our model produces better
results, capturing moving objects such as cars and bikes, as
well as surface edges of trees, pavements and buildings.

We compare the qualitative results for optical flow esti-
mation in Figure 10. We show that our method performs
better than UnFlow [24], Geonet [37] and DF-Net [39] . Our
flow estimations are better at the boundaries of the cars and
pavements. In contrast, competing methods produce blurry
flow fields.



Figure 6: Architecture of the DispNet (left), MaskNet (center-top), FlowNetC (right) and Camera Motion Network (center-
bottom). Convolutional layers are red (stride 2) and orange (stride 1) and upconvolution layers are green (stride 2). Other
colors refer to special layers. Each layer is followed by ReLU, except prediction layers. In each block, the numbers indicate
the number of channels of the input feature map, the number of channels of the output feature map, and the filter size.



Zhou [38] DF-Net [39] Godard [7] CC (ours)
0.383 0.331 0.361 0.320

Table 9: Absolute Relative errors on Make3D test set.

alley 1 alley 2
Zhou et al. [38] 0.002± 0.001 0.027± 0.019
CC (ours) 0.002± 0.001 0.022± 0.015

Table 10: Relative errors on Sintel alley sequences.

Sequence 09 Sequence 10
Shared Encoder 0.017 ± 0.009 0.015 ± 0.009
Uncoupled Networks 0.012 ± 0.007 0.012 ± 0.008

Table 11: Absolute Trajectory errors on KITTI Odometry.

A.6. Additional Experiments

Depth evaluation on Make3D dataset. We also test on
the Make3D dataset [30] without training on it. We use our
our model that is trained only on Cityscapes and KITTI. Our
method outperforms previous work [38, 39, 7] as shown in
Table 9. We show qualitative results in Fig. 5.

Pose evaluation on Sintel. We test on Sintel’s alley se-
quence [2] without training on it and compare it with Zhou
et al. [38]. For this comparison, Zhou et al.’s model is taken
from Pinard’s implementation. We show quantitative evalua-
tion using relative errors on pose in Table 10.

Training using a shared encoder. We train the camera
motion network, C and motion segmentation network, M
using a common shared encoder but different decoders. In-
tuitively, it seems that camera motion network can benefit
from knowing static regions in a scene, which are learned by
the motion segmentation network. However, we observe a
performance degradation on camera motion estimates (Table
11). The degradation of results using a shared encoder are
because feature encodings for one network might not be op-
timal for other networks. Our observation is consistent with
Godard et al. [7] (Supp. Mat. Table 4), where sharing an
encoder for depth and camera motion estimation improves
depth but the perfomance on camera motion estimates are
not as good.

A.7. Timing Analysis

We analyze inference time of our network and compare it
with Geonet [37] in Table 12. We observe that our networks
have a faster run time using the same sized 128×416 images

Method Depth Pose Flow Mask
Geonet [37] 15ms 4ms 45ms -
CC (ours) 13ms 2ms 34ms 3ms

Table 12: Average runtime on TitanX GPU with images of
size 128 × 418.

on a single TitanX GPU. This is because our networks are
simpler and smaller than ones used by Geonet.

For training, we measure the time taken for each iteration
consisting of forward and backward pass using a batch size
of 4. Training depth and camera motion networks (D,C)
takes 0.96s per iteration. Traing the mask network, M takes
0.48s per iteration, and the flow network F takes 1.32s per
iteration. All iterations have a batch size of 4. In total, it
takes about 7 days for all the networks to train starting with
random initialization on a single 16GB Tesla V100.



Image Predicted Depth Consensus Mask

Static scene Optical Flow Segmented Flow in moving regions Full Optical Flow

Figure 7: Network Predictions. Top row: we show image, predicted depth, consensus masks. Bottom row: we show static
scene optical flow, segmented flow in the moving regions and full optical flow.



Image Ground Truth Zhou et al. [38]

Geonet [37] DF-Net [39] CC (ours)

Figure 8: Qualitative results on single view depth prediction. Top row: we show image, interpolated ground truth depths, Zhou
et al. [38] results. Bottom row: we show results from Geonet [37], DF-Net [39] and CC (ours) results.



Image Ground Truth CC (DispResNet)

Basic (DispNet) Basic+ssim (DispNet) CC (DispNet)

Figure 9: Ablation studies on single view depth prediction. Top row: we show image, interpolated ground truth depths,
CC using DispResNet architecture. Bottom row: we show results using Basic, Basic+ssim and CC models using DispNet
architecture.



Image Ground Truth UnFlow-CSS [24]

Geonet [37] DF-Net [39] CC (ours)

Figure 10: Qualitative results on Optical Flow estimation. Top row: we show image 1, ground truth flow, and predictions from
UnFlow-CSS[24]. Bottom row: we show predictions from Geonet [37], DF-Net [39] and CC (ours) model.


