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Abstract

Images represent an important and abundant source of data. Understand-
ing their statistical structure has important applications such as image
compression and restoration. In this paper we propose a particular kind
of probabilistic model, dubbed the “products of edge-perts model” to de-
scribe the structure of wavelet transformed images. We develop a prac-
tical denoising algorithm based on a single edge-pert and show state-of-
the-art denoising performance on benchmark images.

1 Introduction

Images, when represented as a collection of pixel values, exhibit a high degree of redun-
dancy. Wavelet transforms, which capture most of the second order dependencies, form the
basis of many successful image processing applications such as image compression (e.g.
JPEG2000) or image restoration (e.g. wavelet coring). However, the higher order depen-
dencies can not be filtered out by these linear transforms. In particular, the absolute values
of neighboring wavelet coefficients (but not their signs) are mutually dependent. This kind
of dependency is caused by the presence of edges that induce clustering of wavelet activity.
Our philosophy is that by modelling this clustering effect we can potentially improve the
performance of some important image processing tasks.

Our model builds on earlier work in the image processing literature. In particular, the
PoEdges models that we discuss in this paper can be viewed as generalizations of the mod-
els proposed in [1] and [2]. The state-of-art in this area is the joint model discussed in [3]
based on the “Gaussian scale mixture” model (GSM). While the GSM falls in the cate-
gory of directed graphical models and has a top-down structure, the PoEdges model is best
classified as an (undirected) Markov random field model and follows bottom-up semantics.

The main contributions of this paper are 1) a new model to describe the higher order sta-
tistical dependencies among wavelet coefficients (section 2), 2) an efficient estimation pro-
cedure to fit the parameters of a single edge-pert model and a new technique to estimate
the wavelet coefficients that participate in each such (local) model (section 3.1) and 3) a
new “iterated Wiener denoising algorithm” (section 3.2). In section 4 we report on a num-
ber of experiments to compare performance of our algorithm with several methods in the
literature and with the GSM-based method in particular.
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Figure 1: Estimated (Ia) and modelled (Ib) conditional distribution of a wavelet coefficient given
its upper left neighbor. The statistics were collected from the vertical subband at the lowest level of
a Haar filter wavelet decomposition of the ”Lena” image. Note that the “bow-tie” dependencies are
captured by the PoEdges model. (IIa) Bottom up network interpretation of “products of edge-perts”
model. (IIb) Top-down generative Gaussian scale mixture model.

2 “Product of Edge-perts”

It has long been recognized in the image processing community that wavelet transforms
form an excellent basis for representation of images. Within the class oflinear trans-
forms, it represents a compromise between many conflicting but desirable properties
of image representation such as multi-scale and multi-orientation representation, local-
ity both in space and frequency, and orthogonality resulting in decorrelation. A par-
ticularly suitable wavelet transform which forms the basis of the best denoising algo-
rithms today is the over-complete steerable wavelet pyramid [4] freely downloadable from
http://www.cns.nyu.edu/∼lcv/software.html. In our experiments we have confirmed that the best
results were obtained using this wavelet pyramid.

In the following we will describe a model for the statistical dependencies between wavelet
coefficients. This model was inspired by recent studies of these dependencies (see e.g.
[1, 5]). It also represents a generalization of the bivariate Laplacian model proposed in
[2]. The probability distribution of the “product of edge-pert” model (PoEdges) over the
wavelet coefficientsz has the following form,

P (z) =
1
Z

exp
[
−

∑
i

( ∑
j

Wij |âT
j z|βj

)αi
]
, βj > 0, αi ∈ (0, 1], Wij ≥ 0

where the normalization constantZ depends on all the parameters in the model
{Wij , âj , βj , αi} and wherêa indicates an unit-length vector.

In figure 2 we show the effect of changing some parameters for a single edge-pert model
(i.e. seti = 1 in Eqn.1 above). The parameters{βj} control the shape of the contours: for
β = 2 we have elliptical contours, forβ = 1 the contours are straight lines while forβ < 1
the contours curve inwards. The parameters{αi} control the rate at which the distribution
decays, i.e. the distance between iso-probability contours. The unit vectors{âi} determine
the orientation of basis vectors. If the{âi} are axis-aligned (as in figure 2), the distribution
is symmetric w.r.t. reflections of any subset of the{zi} in the origin, which implies that the
wavelet coefficients are necessarily decorrelated (although higher order dependencies may
still remain). Finally, the weights{Wij} model the scale (inverse variance) of the wavelet
coefficients. We mention that it is possible to entertain a larger number of bases vectors
than wavelet coefficients (a so-called “over-complete basis”), which seems appropriate for
some of the empirical joint histograms shown in [1].

This model describes two important statistical properties which have been observed for
wavelet coefficients: 1) its marginal distributionsp(zi) are peaked and have heavy tails
(high kurtosis) and 2) the conditional distributionsp(zi|zj) display “bow-tie” dependencies
which are indicative of clustering of wavelet coefficients (neighboring wavelet coefficient
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Figure 2: Contour plots for a single edge-pert model with (a)β1,2 = 0.5, α = 0.5, (b) β1,2 =
1, α = 0.5, (c) β1,2 = 2, α = 0.5, (d) β1,2 = 2, α = 0.3. For all figuresW1 = 1 andW2 = 0.8.

are often active together). This phenomenon is shown in figure 1Ia,b. To better understand
the qualitative behavior of our model we provide the following network interpretation (see
figure 1IIa,b. Input to the model (i.e. the wavelet coefficients) undergo a nonlinear trans-
formationzi → |zi|βi → u = W |z|β → uα. The output of this network,uα, can be
interpreted as a “penalty” for the input: the larger this penalty is, the more unlikely this
input becomes under the probabilistic model. This process is most naturally understood
[6] as enforcing constraints of the formu = W |z|β ≈ 0, by penalizing violations of these
constraints withuα.

What is the reason that the PoEdges model captures the clustering of wavelet activities?
Consider a local model describing the statistical structure of a patch of wavelet coefficients
and recall that the weighted sum of these activities is penalized. At a fixed position the
activities are typically very small across images. However, when an edge happens to fall
within the window of the model, most coefficients become active jointly. This “sparse”
pattern of activity incurs less penalty than for instance the same amount1 of activity dis-
tributed equally over all images because of the concave shape of the penalty function, i.e.
(act)α < ( 1

2act)α + ( 1
2act)α where “act” is the activity level andα < 1.

2.1 Related Work

Early wavelet denoising techniques were based on the observation that the marginal dis-
tribution of a wavelet coefficient is highly kurtotic (peaked and heavy tails). It was found
that the generalized Gaussian density represents a very good fit to the empirical histograms
[1, 7],

p(z) =
αw

2Γ( 1
α )

exp [−(w|z|)α] , α > 0, w > 0. (1)

This has lead to the successful wavelet coring and shrinkage methods. A bivariate gener-
alization of that model describing a wavelet coefficientzc and its “parent”zp at a higher
level in the pyramid jointly, was proposed in [2]. The probability density,

p(zc, zp) =
w

2π
exp

(
−

√
w(z2

c + z2
p)

)
(2)

is easily seen to be a special case of the PoEdges model proposed here. This model, un-
like the univariate model, captures the bow-tie dependencies described above resulting a
significant gain in denoising performance.

“Gaussian scale mixtures” (GSM) have been proposed to model even larger neighborhoods
of wavelet coefficients. In particular, very good denoising results have been obtained
by including within subband neighborhoods of size3 × 3 in addition to the parent of a
wavelet coefficient [3]. A GSM is defined in terms of a precision variableu, the square-
root of which multiplies a multivariate Gaussian variable:z =

√
u y, y ∼ N [0,Σ],

resulting in the following expression for the distribution over the wavelet coefficients:
p(z) =

∫
duNz[0, uΣ] p(u). Here,p(u) is the prior distribution for the precision variable.

Hence, the GSM represents an example of a generative model with top-down semantics.

1We assume the total amount of variance in wavelet activity is fixed in this comparison.



This in contrast to the PoEdges model which is better interpreted as a bottom-up network
with log-probability proportional to its output. This difference is contrasted in figure 1IIa,b.

3 Edge-pert Denoising

Based on the PoEdges model discussed in the previous sections we now introduce a simpli-
fied model that forms the basis for a practical denoising algorithm. Recent progress in the
field has indicated that it is important to model the higher order dependencies which exist
between wavelet coefficients [2, 3]. This can be realized through the estimation of ajoint
model on a small cluster of wavelet coefficients around each coefficient. Ideally, we would
like to use the full PoEdges model, but training these models from data is cumbersome.
Therefore, in order to keep computations tractable, we proceed with a simplified model,

p(z) ∝ exp
[
−

( ∑
j

wj

(
âj

T z
)2)α]

. (3)

Compared to the full PoEdges model we use only one edge-pert and we have setβj = 2 ∀j.

3.1 Model Estimation

Our next task is to estimate the parameters of this model efficiently. We will learn sepa-
rate models for each wavelet coefficient jointly with a small neighborhood of dependent
coefficients. Each such model is estimated in three steps: I) determine the coefficients that
participate in each model, II) transform each model into a decorrelated domain (this implic-
itly estimates the{âj}) and III) estimate the remaining parametersw, α in the decorrelated
domain using moment matching. Below we will describe these steps in more detail.

By zi, z̃i we will denote the clean and noisy wavelet coefficients respectively. Withyi, ỹi

we denote thedecorrelatedclean and noisy wavelet coefficients whileni denotes the
Gaussian noise random variable in the wavelet domain, i.e.z̃i = zi + ni. Both due to
the details of the wavelet decomposition and due to the properties of the noise itself we
assume the noise to be correlated and zero mean:E[ni] = 0, E[ninj ] = Σij . In this paper
we further assume that we know the noise covariance in the image domain from which
one can easily compute the noise covariance in the wavelet domain, however only minor
changes are needed to estimate it from the noisy image itself.

Step I: We start with a7 × 7 neighborhood from which we will adaptively select the best
candidates to include in the model. In addition, we will always include the parent coef-
ficient in the subband of a coarser scale if it exists (this is done by first up-sampling this
band, see [3]). The coefficients that participate in a model are selected by estimating their
dependencies relative to the center coefficient. Anticipating that (second order) correla-
tions will be removed by sphering we are only interested in higher order dependencies, in
particular dependencies between the variances. The following cumulant is used to obtain
these estimates,

Hcj = E[z̃2
c z̃2

j ]− 2E[z̃cz̃j ]2 − E[z̃2
c ]E[z̃2

j ] (4)

wherec is the center coefficient which will be denoised. The necessary averagesE[·] are
computed by collecting samples within each subband, assuming that the statistics are lo-
cation invariant. It can be shown that this cumulant is invariant under addition of possibly
correlated Gaussian noise, i.e. it’s value is the same for{zi} and{z̃i}. Effectively, we mea-
sure the (higher order) dependencies between squared wavelet coefficients after subtraction
of all correlations. Finally, we select the participants of a model centered at coefficientz̃c by
ranking the positiveHcj and picking all the ones which satisfy:Hci > 0.7×maxj 6=c Hcj .

Step II: For each model (with varying number of participants) we estimate the covariance,

Cij = E[zi, zj ] = E[z̃iz̃j ]− Σij (5)



and correct it by setting to zero all negative eigenvalues in such a way that the sum of
the eigenvalues is invariant (see [3]). Statistics are again collected by sampling within a
subband. Then, we perform a linear transformation to a new basis onto whichΣ = I and
C are diagonal. This can be accomplished by the following procedure,

RRT = Σ ⇒ UΛUT = R−1CR−T ⇒ ỹ = (RU)−1z̃. (6)

In this new space (which is different for every wavelet coefficient) we can now assume
âj = ej , the axis aligned basis vector.

Step III: In the decorrelated space we estimate the single edge-pert model by moment
matching. The moments of the edge-pert model in this space are easily computed using

E
[
(

Np∑
j=1

wjy
2
j )`

]
= Γ

(Np + 2`

2α

)
/ Γ

(Np

2α

)
(7)

whereNp is the number of participating coefficients in the model. We note thatE[ỹ2
i ] =

1 + E[y2
i ]. This leads to the following equation forα

N2
p Γ

(
Np+4

2α

)
Γ

(
Np

2α

)
Γ

(
Np+2

2α

)2 =
Np∑
i=1

E[ỹ4
i ]− 6E[ỹ2

i ] + 3
(E[ỹ2

i ]− 1)2
+

Np∑
i 6=j

E[ỹ2
i ỹ2

j ]− E[ỹ2
i ]− E[ỹ2

j ] + 1
(E[ỹ2

i ]− 1)(E[ỹ2
j ]− 1)

.

(8)
Thus we can estimateα by a line search and approximate the second term on the right hand
side withNp(Np−1) to simplify the calculations. By further noting that the model (Eqn.3)
is symmetric w.r.t. permutations of the variablesuj = wjy

2
j we find

wj = Γ
(Np+2

2α

)
/

(
Np(E[ỹ2

i ]− 1) Γ
(Np

2α

))
. (9)

A common strategy in the wavelet literature is to estimate the averagesE[·] by collecting
samples in a local neighborhood around the coefficient under consideration. The advantage
is that the estimates are adapting to the local statistics in the image. We have adopted
this strategy and used a11 × 11 box around each coefficient to collect121 samples in the
decorrelated wavelet domain. Coefficients for whichE[ỹ2

i ] < 1 are set to zero and removed
from consideration. The estimation ofα depends on the fourth moment and is thus very
sensitive to outliers, which is a commonly known problem with the moment matching
method. We encounter the same problem so whenever we find no estimate ofα in [0, 1]
using Eqn.8 we simply set it to0.5.

3.2 The Iterated Wiener Filter

To infer a wavelet coefficient given its noisy observation in the decorrelated wavelet do-
main, we maximize thea posterioriprobability of our joint model. This is equivalent to,

z∗ = argmax
z

(
log p(z̃|z) + log p(z)

)
. (10)

When we assume Gaussian pixel noise, this translates into,

z∗ = argmin
z

(
1
2 (z− z̃)T K(z− z̃) +

( ∑
j

wjz
2
j

)α
)

(11)

where J is the (linear) wavelet transform̃z = Jx, K = J#T Σ−1
n J# with J# =

(JT J)−1JT the pseudo-inverse ofJ (i.e. J#J = I) andΣn the noise covariance ma-
trix. In the decorrelated wavelet domain we simply setK = I.

One can now construct an upper bound on this objective by using,

fα ≤ γf + (1− α)
(

γ
α

) α
α−1 α < 1. (12)



20 22 24 26 28

30

31

32

33

34

35

36

Input PSNR [dB]

O
u

tp
u

t 
P

S
N

R
 [

d
B

]

Lena

GSM: 35.59, 33.89, 32.67, 31.68
EP   : 35.60, 33.89, 32.62, 31.64
BiV  : 35.35, 33.67, 32.40, 31.40
LiOr : 34.96, 33.05, 31.72, 30.64
LM   : 34.31, 32.36, 31.01, 29.98

20 22 24 26 28
27

28

29

30

31

32

33

34

35

Input PSNR [dB]

O
u

tp
u

t 
P

S
N

R
 [

d
B

]

Barbara

GSM: 34.03, 31.87, 30.31, 29.12
EP   : 34.40, 32.32, 30.86, 29.69
BiV  : 33.35, 31.31, 29.80, 28.61
LiOr : 33.35, 31.10, 29.44, 28.23
LM   : 32.57, 30.19, 28.59, 27.42

Figure 3:Output PSNR as a function of input PSNR for various methods on Lena (left) and Barbara
(right) images. GSM: Gaussian scale mixture (3 × 3+p)[3], EP: edge-pert, BIV: Bivariate adaptive
shrinkage [2], LiOr: results from [8], LM:5 × 5 LAWMAP results from [9]. Dashed lines indicate
results copied from the literature, while solid lines indicate that the values were (re)produced on our
computer.

This bound is saturated forγ = αfα−1, and hence we can construct the following iterative
algorithm that is guaranteed to converge to a local minimum,

zt+1 =
(
K + Diag[2γtw]

)−1
Kz̃ ⇔ γt+1 = α

( ∑
j

wj(zt+1
j )2

)α−1
. (13)

This algorithm has a natural interpretation as an “iterated Wiener filter” (IWF), since the
first step (left hand side) is an ordinary Wiener filter while the second step (right hand side)
adapts the variance of the filter. A summary of the complete algorithm is provided below.

Edge-pert Denoising Algorithm

1. Decompose image into subbands.
2. For each subband (except low-pass residual):
2i. Determine coefficients participating in joint model by using Eqn.4 (includes parent).
2ii. Compute noise covarianceΣ.
2iii. Compute signal covariance using Eqn.5.
3. For each coefficient in a subband:
3i. Transform coefficients into the decorrelated domain using Eqn.6.
3ii. Estimate parameters{α, wi} on a local neighborhood using Eqn.8 and Eqn.9.
3iii. Denoise all wavelet coefficients in the neighborhood using IWF from section 3.2.
3iv. Transform denoised cluster back to the wavelet domain and retain the “center coefficient” only.
4. Reconstruct denoised image by inverting the wavelet transform.

4 Experiments

Denoising experiments were run on the steerable wavelet pyramid with oriented high-
pass residual bands (FSpyr) using 8 orientations as described in [3]. Results are re-
ported on six images: “Lena”, “Barbara”, “Boat”, “Fingerprint”, “House” and “Pep-
pers” and averaged over 5 experiments. In each experiment an image was artificially
contaminated with independent Gaussian pixel noise of some predetermined variance
and denoised using 20 iterations of the proposed algorithm. To reduce artifacts at the
boundaries we used “reflective boundary extensions”. The images were obtained from
http://decsai.ugr.es/∼javier/denoise/index.htmlto ensure comparison on the same set of images.

In table 1 we compare performance between the PoEdges and GSM based denoising algo-
rithms on six test images and ten different noise levels. In figure 3 we compare results on



σ 1 2 5 10 15 20 25 50 75 100

Lena EP 48.65 43.53 38.51 35.60 33.89 32.62 31.64 28.58 26.74 25.53
GSM 48.46 43.23 38.49 35.61 33.90 32.66 31.69 28.61 26.84 25.64

Barbara EP 48.70 43.59 38.06 34.40 32.32 30.86 29.69 26.12 24.12 22.90
GSM 48.37 43.29 37.79 34.03 31.86 30.32 29.13 25.48 23.65 22.61

Boat EP 48.46 43.09 37.05 33.49 31.58 30.28 29.24 26.27 24.64 23.56
GSM 48.44 42.99 36.97 33.58 31.70 30.38 29.37 26.38 24.79 23.75

Fingerprint EP 48.44 43.02 36.66 32.35 30.02 28.42 27.31 24.15 22.45 21.28
GSM 48.46 43.05 36.68 32.45 30.14 28.60 27.45 24.16 22.40 21.22

House EP 49.06 44.32 39.00 35.54 33.67 32.37 31.33 28.15 26.12 24.84
GSM 48.85 44.07 38.65 35.35 33.64 32.39 31.40 28.26 26.41 25.11

Peppers EP 48.50 43.20 37.40 33.79 31.74 30.29 29.13 25.69 23.85 22.50
GSM 48.38 43.00 37.31 33.77 31.74 30.31 29.21 25.90 24.00 22.66

Table 1:Comparison of image denoising results between PoEdges (EP above) and its closest com-
petitor (GSM). All results are averaged over5 noise samples. The GSM results are copied from [3].
Details of the PoEdges algorithm are described in main text. Note that PoEdges outperforms GSM
for low noise levels while the GSM performs better at high noise levels. Also, PoEdges performs best
at all noise levels on the Barbara image, while GSM is superior on the boat image.

FSpyr against various methods published in the literature [3, 2, 9] on the images “Lena”
and “Barbara”.

These experiments lead to some interesting conclusions. In comparing PoEdges with GSM
the general trend seems to be that PoEdges performs superior at lower noise levels while
the reverse is true for higher noise levels. We observe that the PoEdges give significantly
better results on the ”Barbara” image than any other published method (by a large magin).
According to the findings of the authors of [3]2 this stems mainly from the fact that the
parameters are estimated locally which is particularly suited for this image. Increasing the
estimation window in step 3ii of the algorithm let the denoising results drop down to the
GSM solution (not reported here). Comparing the quality of restored images in detail (as in
figure 3) we conclude that the GSM produces slightly sharper edges at the expense of more
artifacts. Denoising a512 × 512 pixel sized image on a pentium 42.8GHz PC for our
adaptive neighborhood selection model took26 seconds for the QMF9 and440 seconds for
the FSpyr.

We also compared GSM and EP using a separable orthonormal pyramid (QMF9). Using
this simpler orthonormal decomposition we found that the EP model outperforms GSM in
all experiments described above. However the results are significantly inferior because the
wavelet representation plays a prominent role for denoising performance. These results and
our matlab implementation of the algorithm are available online3.

5 Discussion

We have proposed a general “product of edge-perts” model to capture the dependency
structure in wavelet coefficients. This was turned into a practical denoising algorithm by
simplifying to a single edge-pert and choosingβj = 2 ∀j. The parameters of this model
can be adapted based on the noisy observation of the image. In comparison with the closest
competitor (GSM [3]) we found superior performance at low noise levels while the reverse
is true for high noise levels. Also, the PoEdges model performs better than any competitor
on the Barbara image, but consistency less well than GSM on the boat image.

The GSM model aims at capturing the same statistical regularities as the PoEdges but using
a very different modelling paradigm: where PoEdges is best interpreted as a bottom-up con-
straint satisfaction model, the GSM is a causal generative model with top-down semantics.
We have found that these two modelling paradigms exhibit different denoising accuracies

2Personal communication
3http://www.kyb.mpg.de/∼pgehler
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Figure 4: Comparison between (c) GSM with3 × 3+parent [3] (PSNR 29.13) and (d) edge-pert
denoiser with parameter settings as described in the text (PSNR 29.69) on Barbara image (cropped
to 150 × 150 to enhance artifacts). Noisy image (b) has PSNR 20.17. Although the results turn out
very similar, the GSM seems to be slightly less blurry at the expense of introducing more artifacts.

on some types of images implying an opportunity for further study and improvement.

The model in Eqn.3 can be extended in a number of ways. For example, we can lift the
restriction onβj = 2, allow more basis-vectorŝaj than coefficients or extend the neighbor-
hood selection to subbands of different scales and/or orientations. More substantial perfor-
mance gains are expected if we can extend the single edge-pert case to a multi edge-pert
model. However, approximations in the estimation of these models will become necessary
to keep the denoising algorithm practical. The adaptation ofα relies on empirical esti-
mations of the fourth moment and is therefore very sensitive to outliers. We are currently
investigating more robust estimators to fitα.

Further performance gains may still be expected through the development of new wavelet
pyramids and through modelling of new dependency structures such as the phenomenon of
phase alignment at the edges.
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